[1]
Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.
Google Scholar
[1]
NIST. Smart space project [EB/OL]. http: /www. nist. gov/smart space, June 25, (2010).
Google Scholar
[2]
MIT. Project oxygen [EB/OL]. http: /oxygen. lcs. mit. edu, June 25, (2010).
Google Scholar
[3]
Microsoft Research. Easy living project[EB/OL]. http: /research. microsoft. com/easyliving/, June 25, (2010).
Google Scholar
[4]
Tsinghua University, Smart classroom project[EB/OL]. http: /media. cs. tsinghua. edu. cn /pervasive/ projects/classroom/ index. html, April 15, (2010).
Google Scholar
[5]
WuQing, Research on Model and Methodology of Adaptive Middleware for Ubiquitous Computing, Zhejiang University, (2006).
Google Scholar
[6]
L R Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[C]. Proceedings of the IEEE, 77(2) : 257, (1989).
DOI: 10.1109/5.18626
Google Scholar
[7]
Xiaodong He, Mei Yang, Jianfeng Gao, Patrick Nguyen, Robert Moore. Indirect-HMM-based hypothesis alignment for combining outputs from machine translation systems[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Pages: 949-957, (2008).
DOI: 10.3115/1613715.1613730
Google Scholar
[8]
Yuexian ZOU, Guangyi SHI, Hang SHI, and Yiyan WANG. Image Sequences Based Traffic Incident Detection for Signaled Intersections Using HMM[C], Hybrid Intelligent Systems, Vol. 1, pp.257-261, (2009).
DOI: 10.1109/his.2009.58
Google Scholar
[9]
Muhonen, K., Dunnihoo, J., Grund, E., Peachey, N., Brankov, A. Failure detection with HMM waveforms[C], EOS/ESD Symposium, 2009 31st: 1-9.
Google Scholar
[10]
FORNEY G David. The viterbi algorithm [J]. Proc. IEEE, 1973, 61(3):268-278.
Google Scholar
[11]
D. Hernando, V. Crespi, and G. Cybenko, Efficient Computation of the Hidden Markov Model Entropy for a Given ObservationSequence, IEEE Trans. Information Theory, vol. 51, no. 7, pp.2681-2685, July (2005).
DOI: 10.1109/tit.2005.850223
Google Scholar
[12]
L.M. Bergasa, J. Nuevo, M.A. Sotalo, and M. Vazquez, Real-time system for monitoring driver vigilance, in Proc. Intelligent Vehicle Symp., Parma, Italy, pp.78-83, (2004).
DOI: 10.1109/ivs.2004.1336359
Google Scholar
[13]
DINGES D F, GRACE R. PERCLOS: a valid psychophysiological measure of alertness as assessed by psychomotor vigilance[R]. National Highway Traffic Safety Administration Final Report 1998, Report No. FHWA-MCRT-98-006.
DOI: 10.1037/e449092008-001
Google Scholar
[14]
Tapas Kanungo. UMDHMM [EB/OL], http: /www. kanungo. com/, (2010).
Google Scholar
[15]
Q. Ji, Z. Zhu, P. Lan. Real-time nonintrusive monitoring and prediction of driver fatigue, IEEE Transactions on Vehicular Technology 53 (2004) 1052–1068.
DOI: 10.1109/tvt.2004.830974
Google Scholar