Mechanical and Thermal Properties of Polyamide 6 Nanocomposite Toughened with Epoxidised Natural Rubber-25

Article Preview

Abstract:

Polyamide (PA6) is an engineering plastic with wide range of applications and the development in the field of montmorillonite (MMT) filled polymer nanocomposites has resulted in the development of PA6/MMT nanocomposites. However, MMT filled PA6 nanocomposites are notch sensitive and brittle at low temperatures, which posed as a major setback for many of its applications. The main objective of this study is to enhance the toughness of PA6/MMT (100/4) nanocomposites with epoxidised natural rubber-25 (ENR25). The ENR-25 content in the composites ranged from 15 to 30 wt%. The PA6/ENR/MMT nanocomposites were extruded and injection molded into tensile and impact test samples. The addition of ENR25 into PA6/MMT nanocomposites improved the impact strength of the nanocomposites while tensile modulus and tensile strength decreased with increasing ENR25 content. The thermal properties of PA6/ENR/MMT nanocomposites were also investigated via thermal gravimetric analysis (TGA). Both T10% and derivative thermal analysis (DTA) determined the lower thermal stability of PA6/MMT nanocomposites after addition of ENR.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 471-472)

Pages:

518-523

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. D. Fasulo, et al.: Polym‏. Eng‏. Sci‏. Vol. 44 ‏(2004), pp.1036-1045.

Google Scholar

[2] M. Kato, et al. ‏: J‏. . Appl‏. Polym‏. Sci‏. Vol. 66 (2007), pp.1781-1785.

Google Scholar

[3] L. Liu, et al. ‏: J. Appl‏. Polym. Sci‏. Vol. 71 (1999), pp.1133-1138.

Google Scholar

[4] T. Lan and T. J. Pinnavaia‏: Chem. Mater. Vol. 6 (1994), pp.2216-2219.

Google Scholar

[5] Z. Wang and T. J. Pinnavaia‏: Chem. Mater. Vol. 10 (1998), pp.3769-3771.

Google Scholar

[6] Y. Kojima, et al,: ‏ J. Mater. Res. Vol. 8 (1993), pp.1185-1189.

Google Scholar

[7] J. C. Huang, et al. ‏: Polymer Vol. 42 (2001), ‏ pp.873-877.

Google Scholar

[8] J. W. Gilman‏. Appl. Clay Sci. Vol. 15 (1999), pp.31-49.

Google Scholar

[9] R. A. Vaia, et al. ‏: Appl. Clay Sci. Vol. 15 (1999), pp.67-92.

Google Scholar

[10] D. F. Eckel, et al. ‏: J‏. Appl‏. Polym. Sci‏. Vol. 93 (2004), pp.1110-1117.

Google Scholar

[11] T. D. Fornes, et al. ‏ Polymer Vol. 43 (2002), pp.5915-5933.

Google Scholar

[12] T. D. Fornes, et al. ‏: Polymer Vol. 42 (2001), pp.9929-9940.

Google Scholar

[13] A. N. Wilkinson, et al. ‏: Compos. Sci. Technol. Vol. 67 (2007), pp.3360-3368.

Google Scholar

[14] T. D. Fornes and D. R. Paul‏: Polymer Vol. 44 (2003), pp.4993-5013.

Google Scholar

[15] L. Zhang, et al. ‏: Polym. Eng. Sci. Vol. 49 (2009), pp.209-216.

Google Scholar

[16] V. Tanrattanakul, et al. ‏: Polym. Test. Vol. 27 (2008), pp.794-800.

Google Scholar

[17] I. González, et al. ‏ : Compos. Sci. Technol. Vol. 66 (2006), pp.1833-1843.

Google Scholar

[18] Y. C. Ahn and D. R. Paul‏: Polymer Vol. 47 (2006), pp.2830-2838.

Google Scholar

[19] J. Chen, et al. ‏: J‏. Appl‏. Polym‏. Sci‏. Vol. 115 (2010), pp.588-598.

Google Scholar

[20] F. C. Chiu, et al. ‏: Polymer Vol. 46 (2005), ‏ pp.11600-11609.

Google Scholar

[21] W. Shishan, et al. ‏: Polym‏. Eng‏. Sci‏. Vol. 44 (2004), ‏ p.2070-(2074).

Google Scholar

[22] T. X. Liu, et al. ‏: Compos. Sci. Technol. Vol. 63 (2003), pp.331-337.

Google Scholar

[23] K. T. Gam, et al. ‏: Polym. Eng. Sci. Vol. 43 (2003), pp.1635-1645.

Google Scholar

[24] Kusmono, et al. ‏: Eur. Polym. J. Vol. 44 (2008), pp.1023-1039.

Google Scholar

[25] M. Zurina, et al. ‏: Polym. Test. Vol. 27(2008), pp.480-490.

Google Scholar