[1]
O. K. Chopra, H. M. Chunga, T. F. Kassnera, J. H. Parka, W. J. Shacka, J. Zhangb, F. W. Brustb and P. Dong. Current research on environmentally assisted cracking in light water reactor environments. Nuclear Engineering and Design, 1999, 194(1-2): 205-223.
DOI: https://doi.org/10.1016/s0029-5493(99)00206-x
[2]
H. Xue and T. Shoji. Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM. Transactions of the ASME- Journal of Pressure Vessel and Technology, 2007, 129(3), 254-258.
DOI: https://doi.org/10.1115/1.2748827
[3]
Jianshu LU, Baofeng WANG, Jiuyuan ZHANG. A Review of Stress Corrosion Cracking Studies of Stainless Steels and Nickel Base Alloys in High Temperature Water. Nuclear Power Engineering, 2001, 22 (3), 259-263.
[4]
P.L. Andresen, K. Gott and J.L. Nelson. Stress corrosion cracking of sensitized type 304 stainless steel in 288°C water: a five laboratory round bobbin, Proceedings of the 9th International Symposium on Environmental Degradation of Material in Nuclear Power Systems-Water Reactors, S. Bruemmer, et al eds., Newport Beach, California, 1999, 423-433.
DOI: https://doi.org/10.1002/9781118787618.ch43
[5]
H. Xue, Y. Sato and T. Shoji. Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components. Transactions of the ASME- Journal of Pressure Vessel and Technology, 2009, 131(1), 61-70.
DOI: https://doi.org/10.1115/1.3027458
[6]
D. C. Lagoudas, P. Entchev and R. Triharjanto. Modeling of Oxidation and its Effect on Crack Growth in Titanium Alloys. Computer Methods in Applied Mechanics and Engineering, 2000, 183(1-2): 35-50.
DOI: https://doi.org/10.1016/s0045-7825(99)00210-8
[7]
ASTM Standard E399-90. Standard test method for plane strain fracture toughness of metallic materials, Annual book of ASTM Standards, Vol. 03. 01, ASTM International, (2002).
DOI: https://doi.org/10.1520/stp33670s
[8]
ABAQUS/Standard User's Manual. Version 6. 5, Pawtucket, RI, Hibbitt, Karlsson & Sorensen, Inc. (2004).
[9]
H. Xue, K. Ogawa and T. Shoji. Effect of welded mechanical heterogeneity on local stress and strain in stationary and growing crack tips, Nuclear Engineering and Design, 2009, 236(5), 628-640.
DOI: https://doi.org/10.1016/j.nucengdes.2008.12.024
[10]
T. Terachi, K. Fuji and K. Arioka. Microstructure Characterization of SCC Crack Tip and Oxide Film for SUS 316 Stainless Steel in Simulated PWR Primary Water at 320°C. Nuclear Science and Technology, 2005, 42(2), 225-232.
DOI: https://doi.org/10.3327/jnst.42.225
[11]
Q.J. Peng, J. Kwon, T. Shoji. Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water. Journal of Nuclear Materials, 2004, 324(1), 52-61.
DOI: https://doi.org/10.1016/j.jnucmat.2003.09.008