[1]
JiaweiHan, MichelineKamber, DataMining: Concepts and Techniques, 2nd ed., Elsevier Inc. 2006, pp.230-231.
Google Scholar
[2]
Quinlan, J.R. C4. 5: Programs for Machine Learning. Morgan Kaufmann Publishers, (1993).
Google Scholar
[3]
R. Agrawal,R. Srikant, Fast algorithms for mining association rules, Proceedings of the 20th Very Large DataBases Conference(VLDB'94), Santiago de Chile, Chile, 1994, pp.487-499.
Google Scholar
[4]
Jianwen Xie, Ijanhua Wu, Qingquan Qian, Feature Selection Algorithm Based on Association Rules Mining Method, IEEE2009 Eight IEEE/ACIS International Conference on Computer and Information Science, pp.357-362.
DOI: 10.1109/icis.2009.103
Google Scholar
[5]
Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http: /www. ics. uci. edu/~mle arn/MLRepository. html]. Irvine, CA: University of California, School of Information and Computer Science.
Google Scholar
[6]
Liu Wei, Zhang Feng-li, Cheng Hong-rong, Wan Ming-cheng, Improved ReliefF algorithm applied in detecting image spam, Application Research of Computers2009, Vol. 26, No. 9, pp.3256-32588.
Google Scholar
[7]
DaiLei; YunXiaochun; XiaoJun, Optimizing traffic classification using hybrid feature selection, IEEE2009 Ninth International Conference on Web-Age Information Management (WAIM), pp.520-525.
DOI: 10.1109/waim.2008.30
Google Scholar
[8]
Ohara, Kouzou; Hara, Masahiro; Takabayashi, Kiyoto; Motoda, Hiroshi; Washio, Takashi, Pruning strategies based on the upper bound of information gain for discriminative subgraph mining, Lecture Notes in Computer Science2009 (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5465, LNAI, pp.50-60.
DOI: 10.1007/978-3-642-01715-5_5
Google Scholar
[9]
Jingnian Chen; Shujun Fu; Taorong Qiu; Gain-ratio-based selective classifiers for incomplete data, 2009 IEEE International Conference on Granular Computing (GrC 2009), pp.57-60.
DOI: 10.1109/grc.2009.5255162
Google Scholar
[10]
Senthamarai Kannan, Ramaraj, A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm, Knowledge-Based Systems2010, Vol. 23, No. 6, pp.580-585.
DOI: 10.1016/j.knosys.2010.03.016
Google Scholar
[11]
Kabir, M.M.; Shahjahan, M.; Murase, K.; Involving New Local Search in Hybrid Genetic Algorithm for Feature Selection, ICONIP 2009, Neural Information Processing. Proceedings 16th International Conference, pp.150-158, Springer Verlag, Berlin.
DOI: 10.1007/978-3-642-10684-2_17
Google Scholar