High-Grade Utilization of Recovering Wastewater from Cinnamomum Camphora Oil

Article Preview

Abstract:

The production of noble Cinnamomum camphora oil from C. camphora leaves and twigs brings a mass of extracting wastewater which is pollutive to water environment. In order to better utilize and recover the productive wastewater from the Eucalyptus oil, we used GC/MS to analyze the possible top value-added components of benzene/ethanol extractives of leaves and twigs of C.camphora. The analytical result showed that only 15 compounds were identified from the benzene/ethanol extractive of C. camphora trigs, and 29 compounds from 30 peaks were identified from the benzene/ethanol extractive of C. camphora leaves. The analytical result showed that the main components of the benzene/ethanol extractive of C. camphora twigs by GC/MS are as: Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)- (36.85%), Linalyl propanoate (23.58%), Eucalyptol (10.07%), 1,3-Benzodioxole, 5-(2-propenyl)- (8.88%), 4,4-dimethylcholest-7-ene-3-ol (5.81%), Cyclopentanol (3.37%), 1,2,4-Cyclopentanetrione, 3-(2-pentenyl)- (2.52%), etc. The result by GC/MS analysis showed that the benzene/ethanol extractive of leaves of C. camphora are as: Eucalyptol (58.51%), 3-Cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl- (13.98% from two peaks), Sabinene (4.45%), 1-Mercapto-2-heptadecanone (2.69%), Phytol (2.29%), Camphene (1.94%), 1-Eicosanol (1.81%), Caryophyllene (1.63%), 1,3-Benzodioxole, 5,5'-(tetrahydro- 1H,3H-furo[3,4-c]furan-1,4-diyl)bis-, [1S-(1.alpha.,3a.alpha.,4.beta.,6a.alpha.)]- (1.50%), 1-Penten- 3-ol (1.01%), beta.-Pinene (0.86%), etc. There are many important constituents of rare natural medicine, cosmetic and spicery in the benzene/ethanol extractive of twigs and leaves of C. camphora.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 480-481)

Pages:

272-277

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Chen, G. Dai, J. Zhao, A. Zhong, J. Wu, and H. Yan: J. Hazard. Mater. Vol. 177 (2010), p.228.

Google Scholar

[2] D. Zhang, W. Peng, Q. Liu, Q. Ma, X. Tan, H. Chen, and H Tian: Journal of The Chinese Cereals And Oils Association Vol. 23 (2008), p.161.

Google Scholar

[3] Z. Li, Q. Wen, and X. Dai: JiangXi Forestry Science and Technology Vol. 6 (2007), p.30.

Google Scholar

[4] J. Ibrahim, M.A. Rasadah, and S.H. Goh: Journal of Tropical Forest Science Vol. 6 (1994), p.286.

Google Scholar

[5] Y.Z. Ma, Q. Tan, and H.Y. Li: Journal of Central South University of Forestry & Technology Vol. 29 (2009), p.36.

Google Scholar

[6] R.W. Owen, R. Haubner, G. Würtele, E. Hull, B. Spiegelhalder, and H. Bartsch: Eur. J. Cancer Prev. Vol. 13 (2004), p.319.

DOI: 10.1097/01.cej.0000130221.19480.7e

Google Scholar

[7] M. Miyazawa, Y. Hashimoto, Y. Taniguchi, and K. Kubota: Nat. Prod. Lett. Vol. 15 (2001), p.63.

Google Scholar

[8] F.L. Hsu, C.J. Chou, Y.C. Chang, T.T. Chang, and M.K. Lu: Int. J. Food Microbiol. Vol. 106 (2006), p.32.

Google Scholar

[9] L. Kalvodova: Biochem. Biophys. Res. Commun. Vol. 393 (2010), p.350.

Google Scholar

[10] Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic: Nature vol. 447 (2007), p.982.

Google Scholar

[11] F. Destaillats, C. Cruz-Hernandez, F. Giuffrida and F. Dionisi: J. Agric. Food Chem. Vol. 24 (2010), p. (2082).

Google Scholar

[12] V. S Fara, E. N. Zerba, and R. A. Alzogaray: J. Medical Entom. Vol. 46 (2009), p.511.

Google Scholar