Analysis of Top Value-Added Utilization of Waste Leaves from Rosewood Tree by GC/MS

Article Preview

Abstract:

Rosewood tree has high adaptability to environment and tolerance to water stress, and a long history of utilization and plantation in many countries. However, researches on Rosewood were mostly focused on the biomass analyses and utilizations of its wood, and lacked those to analyze the chemical components of extractives of Rosewood leaves, which was very important to recover and utilize the polluting waste Rosewood leaves. Therefore, the chemical components of benzene/ethanol extractives of Rosewood leaves were analyzed by method of GC/MS in order to identify top value-added bioactive components from waste leaves of Rosewood tree. The analytical result showed that the main components of benzene/ethanol extractives of freeze-dried Rosewood leaves by GC/MS analysis were identified 16 constituent (16 peaks) as: Ethanol, 2-butoxy- (40.36%), 2-O-Methyl-D-mannopyranosa (18.22 %), Hydrazine, 1,1-dipropyl- (6.09%), 1-Docosanol (5.59%), 1-Eicosanol (5.28%), Oxirane, hexadecyl- (3.63%), trans-2,4,5-Trimethoxy-.beta.-methyl- (3.50%), Bicyclo[3.1.1]heptane, 2,6,6-trimethyl- (2.53%), 9,12,15-Octadecatrienoic acid, methyl- (2.43%), Tetratetracontane (2.31%), Hexadecane, 1-(ethenyloxy)- (2.27%), Cholan-24-oic acid, 7,12-bis(acetyloxy)-3-ethoxy-, methyl ester, (3.alpha.,5.beta.)- (2.10%), Hexatriacontane (2.02%), Phytol (1.76%), Octadecane, 1-chloro (1.08%), etc. As the first report here, our result by GC/MS showed that the benzene-methanol extractive of freeze-dried Rosewood leaves can be developed into top value-added materials of medicines, biofuel, and industrial solvents.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 480-481)

Pages:

278-282

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.D. Emberson, P. Büker, and M.R. Ashmore: Environ. Pollut. Vol. 147 (2007), p.454.

Google Scholar

[2] B.Y. Lu, A. Merlin, P. Perre, L. Chrusciel, and D.G. Zhou: Journal of Nanjing Forest ry University (Natural Sciences Edition). Vol. 31 (2007), p.1.

Google Scholar

[3] D. Reyes, D. Rodríguez, M.P. González–García, O. Lorenzo, G. Nicolás, J.L. García–Martínez, and C. Nicolás: Plant Physiol. Vol. 141 (2006), p.1414.

Google Scholar

[4] M. Demir, E. Makineci, and E. Yilmaz: J. Environ. Biol. Vol. 28 (2007), p.427.

Google Scholar

[5] P. Miao, S.Z. Zhuang, Z.X. Zhu, and G.X. Shen: China Wood–Based Panels Vol. (2006), p.12.

Google Scholar

[6] N. Fukagawa, G. Meshitsuka, and A. Ishizu: J. Wood Chem. Technol., Vol. 12 (1992), p.425.

Google Scholar

[7] B.K. Singh, and K. Tate: FEMS Microbiol. Lett. Vol. 275 (2007), p.89.

Google Scholar

[8] S.Q. Wang, S.B. Wu, and X.L. Zhu: Transact. of China Pulp and Paper, Vol. 20 (2005), p.178.

Google Scholar

[9] K. Fackler, M. Schwanninger, C. Gradinger, B. Hinterstoisser, and K. Messner: FEMS Microbiol. Lett. Vol. 271(2007), p.162.

Google Scholar

[10] Z. Song, J.X. You, H. Yu, and K. Lu: China Forest Products Industry Vol. 28 (2001), p.28.

Google Scholar

[11] T. Grebenc, and H. Kraigher: Environ. Monit. Assess Vol. 128 (2007), p.47.

Google Scholar

[12] A. Tufekcioglu, S. Guner, and M. Kucuk: J. Environ. Biol. Vol. 25 (2004), p.317.

Google Scholar

[13] M. Ferretti, M. Calderisi, and F. Bussotti: Environ. Pollut. Vol. 145 (2007), p.644.

Google Scholar

[14] K. Yoshida, J. Kusaki, K. Ehara, and S. Saka: Appl. Biochem. Biotechnol. Vol. 121 (2005), p.795.

Google Scholar

[15] A. Yasuhara, T. Katami, and T. Shibamoto: Environ. Sci. Technol. Vol. 37 (2003), p.1563.

Google Scholar

[16] K. Herbinger, C. Then, K. Haberer, M. Alexou, M. Law, K. Remele, H. Rennenberg, R. Matyssek, D. Grill, G. Wieser, and M. Tausz: Plant Biol. (Stuttg) Vol. 9 (2007), p.288.

DOI: 10.1055/s-2006-924660

Google Scholar

[17] C.L. Chan, E.J. Lien, and Z.A. Tokes: J. Med. Chem. Vol. 30 (1987), p.509.

Google Scholar

[18] Y.X. Xie, Y. Zhu, and Q.H. Zhao: Journal of Chinese Mass Spectrometry Society Vol. 21 (2001), p.99.

Google Scholar

[19] Z. Xia, T. Yoshida, and M. Funaoka: Biotechnol. Lett. Vol. 25 (2003), p.9.

Google Scholar

[20] B.C. Wang: J. Zhejiang Sci. tech. Vol. 24 (2004), p.41.

Google Scholar

[21] Y. Román–Leshkov, J. N. Chheda, and J. A. Dumesic: Science Vol. 312 (2006), p. (1933).

Google Scholar

[22] R.M. Gong, and L. Yang: China Forest Products Industry. Vol. 30 (2003), p.19.

Google Scholar

[23] B. Schink, J.C. Ward, and J.G. Zeikus: Appl. Environ. Microbiol. Vol. 42 (198), p.: 526.

Google Scholar

[24] D.Y. Chen: China Forest Products Industry Vol. 27 (2000), p.23.

Google Scholar

[25] H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang: Science Vol. 316 (2007), p.1597.

Google Scholar

[26] M.A. Shao, Z.P. Shangguan, and J. Dyckmans: Acta Pedologica. Sinica Vol. 37 (2000), p.549.

Google Scholar

[27] A. Tufekcioglu, S. Guner, and F. Tilki: J. Environ. Biol. Vol. 26 (2005), p.91.

Google Scholar

[28] Y. Román–Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic: Nature Vol. 447 (2007), p.982.

Google Scholar

[29] L. Kalvodova: Biochem. Biophys. Res. Commun. Vol. 393 (2010), p.350.

Google Scholar

[30] F. Destaillats, C. Cruz-Hernandez, F. Giuffrida and F. Dionisi: J. Agric. Food Chem. Vol. 24 (2010), p. (2082).

Google Scholar