Scatter Correction Method for Cone Beam CT Using Beam Attenuation Grid

Article Preview

Abstract:

The scattering phenomenon has an important influence on the reconstructed image in Cone Beam CT (CBCT) imaging systems, and is a long-lasting research topic on CBCT. Focusing on the scatter artifact in the cone beam CT system, we proposed a new scatter correction method that needed to add a beam attenuation grid (BAG) between the X - ray source and the tested object. This study educed the scatter correction algorithm based on the Beer theorem. Through subtracting the scatter distribution image from the original projection image, we can acquire the scatter-corrected projection Images of the tested object. The method has been verified by preliminary experimental results on phantom. The result showed that the method can effectively reduce the scatter artifacts, increase the image contrast and increase the quality of the reconstructed slice image. This method is computationally efficient and easy to implement without the loss of real-time imaging capabilities.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 480-481)

Pages:

341-346

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Boone and J. Seibert, An analytical model of the scattered radiation distribution in diagnostic radiology, Med. Phys. 15(5), 1988, p.721–725.

DOI: 10.1118/1.596186

Google Scholar

[2] C. E. Floyd, A. H. Baydush, J. Y. Lo, J. E. Bowsher, and C. E. Ravin, Scatter compensation for digital chest radiography using maximum likelihood expectation maximization, Invest. Radiol. 28(5), 1993, p.427–433.

DOI: 10.1097/00004424-199305000-00009

Google Scholar

[3] M. Honda, K. Kikuchi, and K. Komatsu, Method for estimating the intensity of scattered radiation using a scatter generation model, Med. Phys. 18(2), 1991, p.219–226.

DOI: 10.1118/1.596710

Google Scholar

[4] J. Wiegert, M. Bertram, G. Rose, and T. Aach, Model-based scatter correction for cone-beam computed tomography, Proc. SPIE 5745, 2005, pp.271-282.

DOI: 10.1117/12.594520

Google Scholar

[5] D. G. Kruger, F. Zink, W. W. Peppler, D. L. Ergun, and C. A. Mistretta, A regional convolution kernel algorithm for scatter correction in dualenergy images: Comparison to single-kernel algorithms, Med. Phys. 21(2), 1994, p.175–184.

DOI: 10.1118/1.597297

Google Scholar

[6] M. Zellerhoff, B. Scholz, E. P. Ruhrnschopf, and T. Brunner, Low contrast 3D-reconstruction from C-arm data, Proc. SPIE 5745, 2005, p.646–655.

DOI: 10.1117/12.593433

Google Scholar

[7] R. Ning, X. Tang, and D. Conover, X-ray scatter correction algorithm for cone-beam CT imaging, Med. Phys. 31(5), 2004, p.1195–1202.

DOI: 10.1118/1.1711475

Google Scholar

[8] L. Zhu, N. Strobel, and R. Fahrig, X-ray scatter correction for conebeam CT using moving blocker array, Proc. SPIE 5745, 2005, p.251–258.

DOI: 10.1117/12.594699

Google Scholar

[9] J. Boone, Scatter correction algorithm for digitally acquired radiographs: Theory and results, Med. Phys. 13(3), 1986, p.319–328.

DOI: 10.1118/1.595920

Google Scholar

[10] A. Bani-Hashemi, E. Blanz, J. Maltz, D. Hristov, and M. Svatos, Cone beam x-ray scatter removal via image frequency modulation and filtering, Med. Phys. 32(6), 2005, p. (2093).

DOI: 10.1118/1.1998387

Google Scholar

[11] J. H. Siewerdsen, M. J. Daly, B. Bakhtiar, D. J. Moseley, S. Richard, H. Keller, and D. A. Jaffray, A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT, Med. Phys. 33(1), 2006, p.187–197.

DOI: 10.1118/1.2148916

Google Scholar

[12] L. Zhu, Y. Xie, J. Wang, and L. Xing, Scatter correction for cone-beam CT in radiation therapy, Med. Phys. 36(6), 2009, p.2258–2268.

DOI: 10.1118/1.3130047

Google Scholar

[13] Zhu L, Wang J, Xing L. Noise suppression in scatter correction for cone-beam CT, Medical Physics, 36(3), 2009, pp.741-752.

DOI: 10.1118/1.3063001

Google Scholar

[14] HU Dong-cai, CHEN Hao ZHANG, Ding-hua. Scatter Correction Method for Flat-Panel Detector-Based Cone Beam CT, Computerized Tomography Theory and Applications. 18(1), 2009, pp.16-22.

Google Scholar

[15] L. Spies, P. M. Evans, M. Partridge, V. N. Hansen, and T. Bortfeld, Direct measurement and analytical modeling of scatter in portal imaging, Med. Phys. 27, 2000, p.462–471.

DOI: 10.1118/1.598914

Google Scholar

[16] C. Jonsson and S. A. Larsson, A spatially varying Compton scatter correction for SPECT utilizing the integral Klein-Nishina cross section, Phys. Med. Biol. 46, 2001, p.1767–1783.

DOI: 10.1088/0031-9155/46/7/303

Google Scholar

[17] J. H. Siewerdsen, M. J. Daly, B. Bakhtiar, D. J. Moseley, S. Richard, H. Keller, and D. A. Jaffray, A simple direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT, Med. Phys. 33, 2006, p.187–197.

DOI: 10.1118/1.2148916

Google Scholar

[18] E. Spezi, P. Downes, E. Radu, R. Jarvis, Monte Carlo simulation of an x-ray volume imaging cone beam CT unit, Medical Physics, 36(1) , 2009, pp.127-136.

DOI: 10.1118/1.3031113

Google Scholar