[1]
Zhang Jun, Lu Senlin, He Weixing: Vibrating Diagnosis of Rolling Bearings Based on Backpropogation Neural Network. LIGHT INDUSTRAY MACHINERY. Forum Vol. 2(2007), pp.90-93.
Google Scholar
[2]
Mei Hongbin. Ball bearing vibration monitoring and diagnosis (China Machine Press Beijing 1996).
Google Scholar
[3]
O. GGustantsson,T. Tallian. Detection of Damage in Assembled Rolling Bearing. Transactions of the ASLE, Forum Vol. 5(1962), pp.197-209.
Google Scholar
[4]
G.K. Singh, S.A. Saleh, and A.I. Kazzaz, Induction machine drive condition monitoring and diagnostic research-a survey . Electric Power Systems Reserch, Vol. 64(2003), p.145–158.
DOI: 10.1016/s0378-7796(02)00172-4
Google Scholar
[5]
B. Maru, and P. A. Zotos, Anti-friction bearing temperature rise for NEMA frame motors . IEEE Transactions on Industry Applications, Vol. 25(1989), pp.883-888.
DOI: 10.1109/28.41253
Google Scholar
[6]
Chun-Chieh Wang, Yuan Kang, Ping-Chen Shen, Yeon-Pun Chang, Yu-Liang Chung. Applications of fault diagnosis in rotating machinery by using time series analysis with neural network . Expert Systems with Applications, Vol. 37(2010), pp.1696-1702.
DOI: 10.1016/j.eswa.2009.06.089
Google Scholar
[7]
Yu Yang, Dejie Yu, Junsheng Cheng. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement, Vol. 40(2007), pp.943-950.
DOI: 10.1016/j.measurement.2006.10.010
Google Scholar
[8]
Qiao Hua, Zhengjia He, Zhousuo Zhanga, Yanyang Zia. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble . Mechanical Systems and Signal Processing, Vol. 21(2007), pp.688-705.
DOI: 10.1016/j.ymssp.2006.01.007
Google Scholar
[9]
F. Bolaers,O. Cousinard,P. Mareounet,L. Rasolofondralbe. Advanced detection of rolling bearings spalling from de-noising vibratory signals. Control Engineering Practice, Vol. 12 (2004), pp.181-190.
DOI: 10.1016/s0967-0661(03)00048-0
Google Scholar
[10]
R. Rubini,U. Meneghetti. Application of the envelope and wavelet transform analysis or the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal processing,Vol. 15(2001), pp.257-302.
DOI: 10.1006/mssp.2000.1330
Google Scholar
[11]
N.G. Nikolaou, I. A Antoniadis. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets . Mechanical Systems and Signal Proeessing, Vol. 16(2002), pp.677-694.
DOI: 10.1006/mssp.2001.1459
Google Scholar
[12]
Stefan Eriesson, Niklas Grip, et al. Towards automatic detection of local bearing defects in rotating machines . Mechanical Systems and Signal Processing, Vol. 19(2005), pp.509-535.
DOI: 10.1016/j.ymssp.2003.12.004
Google Scholar
[13]
Xu Yuxiu, Yuan Peixin, Xing Gang. An Application of Maximum Entropy Method to Fault Diagnosis of Rolling Bearings. MECHANICAL SCIENCE AND TECHNOLOGY, Vol. 20(2001), pp.571-574.
Google Scholar
[14]
Zhao XieGuang. Study on the fault diagnosis methods of rolling bearing based on wavelet transform and empirical mode decomposition. Shandong University of Science and Technology, (2009).
Google Scholar
[15]
Opatinskaia E L, Zhu J, Mathew J. Monitoring varying speed machinery vibrations- II recursive filters and angle domain . Mechanical Systems and Signal Processing, Vol. 9(1995), pp.647-655.
DOI: 10.1006/mssp.1995.0048
Google Scholar
[16]
Jian-Da Wu, Chin-Wei Huang, Jien-Chen Chen. An order-tracking technique for the diagnosis of faults in rotating machineries using a variable step-size affine projection algorithm. NDT&E International, Vol. 38(2005), pp.119-127.
DOI: 10.1016/j.ndteint.2004.07.003
Google Scholar
[17]
Li Hui, Zheng Haiqi, Yang Shaopu. Gear fault diagnosis using order tracking and Teager energy operator during startup. Journal of Vibration, Measurement & Diagnosis, Vol. 29 (2009), pp.167-170, 240.
DOI: 10.1109/chicc.2008.4605474
Google Scholar
[18]
Kang Haiying, Qi Yanjie, Wang Hong, Luan Junying, Zheng Haiqi. Fault Diagnosis of Rolling Bearing Based on Order Cepstrum Analysis and Empirical Mode Decomposition. Journal of Vibration, Measurement & Diagnosis, Vol. 29( 2009), pp.60-65, 118.
DOI: 10.1109/icemi.2007.4351015
Google Scholar
[19]
S.C. Tan C.P. Lim, M.V.C. Rao. A hybrid neural network model for rule generation and its application to process fault detection and diagnosis. ARTIFICIAL INTELLIGENCE, Vo. 20(2007), pp.203-213.
DOI: 10.1016/j.engappai.2006.06.007
Google Scholar