High-Power Piezoelectric Characteristics of Sr2Bi4Ti5O18-Ca2Bi4Ti5O18-Based Ferroelectric Ceramics

Article Preview

Abstract:

The high-power piezoelectric characteristics of lead-free piezoelectric ceramics, based on a bismuth layer-structured ferroelectric, MnCO3-doped (Sr0.7Ca0.3)2Bi4Ti5O18 (abbreviated as SCBT0.3 + Mn x wt%), were studied. SCBT0.3 + Mn x wt% lead-free ceramics showed an extremely high mechanical quality factor (Qm) of more than 3000 in the (33) vibration mode under small-amplitude vibration. The high-power piezoelectric characteristics of SCBT0.3 + Mn x wt% were measured using the high-power measurement method based on frequency sweep driving under a constant voltage condition. It was found that the vibration velocity v0-p of SCBT0.3 + Mn 0.2 wt% linearly increased up to approximately 3.0 m/s. Therefore, the Mn-doped SCBT0.3-based ceramics are a promising candidate for lead-free high-power applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-96

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Nature 432 (2004) 84.

DOI: 10.1038/nature03028

Google Scholar

[2] M. Matsubara, K. Kikuta, and S. Hirano: J. Appl. Phys. 97 (2005) 114105.

Google Scholar

[3] K. Kakimoto, I. Masuda, and H. Ohsato: Jpn. J. Appl. Phys. 42 (2003) 6102.

Google Scholar

[4] K. Kusumoto: Jpn. J. Appl. Phys. 45 (2006) 7440.

Google Scholar

[5] T. Takenaka, K. Maruyama, and K. Sakata: Jpn. J. Appl. Phys. 30 (1991) 2236.

Google Scholar

[6] H. Li, C. Feng, and P. Xiang: Jpn. J. Appl. Phys. 42 (2003) 7387.

Google Scholar

[7] Y. Hiruma, T. Watanabe, H. Hajime Nagata, and T. Takenaka: Jpn. J. Appl. Phys. 47 (2008) 7659.

Google Scholar

[8] H. Nagata, S. Horiuchi, Y. Hiruma and T. Takenaka: Proc. of the 2005 IEEE International Ultrasonics Symposium, (2006) pp.1077-1082.

Google Scholar

[9] S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu, and H. Niimi: Jpn. J. Appl. Phys. 45 (2006) 7455.

Google Scholar

[10] H. Ogawa, S. Kawada, M. Kimura, K. Shiratsuyu, and Y. Sakabe: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (2007) 2500.

DOI: 10.1109/tuffc.2007.567

Google Scholar

[11] S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu, and Y. Higuchi: Jpn. J. Appl. Phys. 46 (2007) 7079.

Google Scholar

[12] M. Umeda, K. Nakamura, and S. Ueha: Jpn. J. Appl. Phys. 37 (1998) 5322.

Google Scholar

[13] P. Gerthsen, K. H. Ha¨rdtl, and N. A. Schmidt: J. Appl. Phys. 51 (1980) 1131.

Google Scholar

[14] S. Takahashi: Ferroelectrics 41 (1982) 143.

Google Scholar

[15] S. Takahashi and S. Hirose: Jpn. J. Appl. Phys. 31 (1992) 3055.

Google Scholar

[16] K. Hayashi, A. Ando, Y. Hamaji, and Y. Sakabe: Jpn. J. Appl. Phys. 37 (1998) 5237.

Google Scholar