Measurement of Normal Force in Magnetorheological and Ferrofluid Lubricated Bearings

Article Preview

Abstract:

Preliminary analysis of magnetorheological fluid usability in fluid lubricated bearings has been described in the present study. Results of the study aimed at rheological properties of chosen fluids, which possess magnetic properties (both ferrofluids and magnetorheological fluids) with respect to their application in slide bearings have been presented Preliminary analysis of potential advantages related with the magnetic fluid bearing construction was carried out. Results of measurements of normal force developed within magnetorheological fluid and ferrofluid in result of magnetic field action at various shear rate values have been presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Odenbach, Ferrofluids-magnetically controlled suspensions, Colloids and Surface, 2003, 217.

Google Scholar

[2] L. Vekas, Ferrofluids and Magnetorheological Fluids, Advances in Science and Technology Vol. 54 (2008), 127.

Google Scholar

[3] K. Raj, B. Moskowitz, R. Casciari, Advances in ferrofluid technology, Journal of Magnetism and Magnetic Materials,1995, 149.

DOI: 10.1016/0304-8853(95)00365-7

Google Scholar

[4] A. G. Olabi, S. Grunwald, Design and application of magneto-rheological fluid, Materials and Design. 2007, 28.

DOI: 10.1016/j.matdes.2006.10.009

Google Scholar

[5] A. Miszczak, Analysis of hydrodynamic lubrication of journal bearings, Gdynia, Foundation for the Development of the Gdynia Maritime University, 2006.

Google Scholar

[6] P. Kuzhir, Free boundary of lubricant film in ferrofluid journal bearings, Tribology International, 4, 2008, 41.

DOI: 10.1016/j.triboint.2007.07.006

Google Scholar

[7] M. Miwa, H. Harita, R. Kaneko, H. Ishizaki, Frequency characteristics of stiffness and damping effect of a ferrofluid bearing, Wear, 2003, 254.

DOI: 10.1016/s0043-1648(03)00312-0

Google Scholar

[8] F. T. Barwell, Bearing systems, Oxforrd University Press, 1979.

Google Scholar

[9] J. M. Guldbakke, J. Hesselbach, Developmnent of bearings and a damper based on magnetically controllable fluids, Journal of Physics, Volume 18, Issue 38, 2959, 2006.

DOI: 10.1088/0953-8984/18/38/s29

Google Scholar

[10] K. Nagayaa, S.Takedaa, A. Satoa, A. Ikaia, H. Sekiguchia, N.Saitoa. Thrust bearing using a magnetic fluid lubricant under magnetic fields, Tribology International 1, 1993, vol. 26.

DOI: 10.1016/0301-679x(93)90033-w

Google Scholar

[11] A. Farjoud, R. Cavey, M. Ahmadian, M. Craft. Magneto-rheological fluid behavior in squeeze mode, Smart Materials and Structures, 2009, 9.

DOI: 10.1088/0964-1726/18/9/095001

Google Scholar

[12] M. T. López-López, P. Kuzhir, J. D. G. Durán, G. Bossis, Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses, Journal of Rheology, 2011, 54.

DOI: 10.1122/1.3479043

Google Scholar

[13] H. M. Laun, C. Gabriel, G. Schmidt, Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T, Journal of Non-Newtonian Fluid Mechanic, 2008, 148.

DOI: 10.1016/j.jnnfm.2007.04.019

Google Scholar

[14] J. C. Ulicny, C. A. Hayden, P. M. Hanley, D. F. Eckel, Magnetorheological fluid durability test-Organics analysis. Materials Science and Engineering, 2007, 464.

DOI: 10.1016/j.msea.2007.01.059

Google Scholar

[15] J. C. Ulicny, M. P. Balogh, N. M. Potter,R. A. Waldo, Magnetorheological fluid durability test-Iron analysis. Materials Science and Engineering, 2007, 4443.

DOI: 10.1016/j.msea.2006.06.050

Google Scholar