Preparation and Characterization of Nano-Films Materials

Article Preview

Abstract:

Nano-sheets are two-dimensional sheet materials exfoliated from the inorganic layered compounds by various physical and chemical methods. Their unique characteristics insertion reaction and excellent physical and chemical properties have attracted more and more researchers' widespread interests. Selecting quartz glass as the substrate, using layer by layer self-assembly technology, different nano-films materials are prepared. UV/Vis spectroscopy confirmed nano-films materials have been successfully assembled using LBL self-assembly technique. Raman spectrum are mainly used to analyze and characterize the structure of nano-films materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-163

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang: Analyst Vol. 130 (2005), p.421.

Google Scholar

[2] H. Bonnemann and F. J. M. Richards: Eur. J. Inorg. Chem. (2001), p.2455.

Google Scholar

[3] C. M. Niemeyer: Angew. Chem. Int. Ed. Vol. 40 (2001), p.4129.

Google Scholar

[4] A. M. Smith and S. Nie: Analyst Vol. 129 (2004), p.672.

Google Scholar

[5] C. R. Martin: Acc. Chem. Res. Vol. 28 (1995), p.61.

Google Scholar

[6] J. Wang, J. Dai and T. Yarlagadda: Langmuir Vol. 21 (2005), p.9.

Google Scholar

[7] T.X. Wei, J. Zhai, L.B. Gan, C.H. Huang: Chin. Chem. Lett. Vol. 11 (2000), p.161.

Google Scholar

[8] G.A.M.C. Spierings, et al.: J. Appl. Phys. Vol. 70 (1991), p.2290.

Google Scholar

[9] N. Tohge, S. Takahashi, T. Minami, et al.: J. Am. Ceram. Soc. Vol. 74 (1991), p.67.

Google Scholar

[10] G.H. Haertling: J. Vac. Sci. Technol. Vol. 9 (1991), p.414.

Google Scholar

[11] M.N. Kamalasanaa, K. N. Deepak, C. Subhas: J. Appl. Phys. Vol. 76 (1994), p.4603.

Google Scholar

[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al.: Rev. Mod. Phys. Vol. 81 (2009).

Google Scholar

[13] A. K. Geim: Science (2009), p.324.

Google Scholar

[14] K.P. Loh, Q. Bao, P.K. Ang, et al.: J. Mater. Chem. Vol. 20 (2010), p.2277.

Google Scholar

[15] C. N. Rao, A. Sood, K. S. Subrahmanyam, et al.: Angew. Chem. Int. Ed. Vol. 48 (2009), p.7752.

Google Scholar

[16] C. Yang, W. Wang, Z. Shan, et al.: J. Solid State Chem. Vol. 182 (2009), p.807.

Google Scholar

[17] W.S. Hummers, R.E. Offeman: J. Am. Chem. Soc. Vol. 80 (1958), p.1339.

Google Scholar

[18] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, et al.: Chem. Mater. Vol. 11 (1999), p.771.

Google Scholar

[19] S. Park, J. An, R.D. Piner, et al.: Chem. Mater. Vol. 20 (2008), p.6592.

Google Scholar

[20] J.N. Coleman, et al.: Science Vol. 331 (2011), p.568.

Google Scholar

[21] L. M. Malard, J. Nilsson, D. C. Elias, et al.: Phys. Rev. Vol B76 ( 2007), p.201401(R).

Google Scholar

[22] Y.C. Zhang, Z. Du, S. Li, et al.: Applied Catalysis B Vol. 95 (2010), p.153.

Google Scholar

[23] R. Wei, H. Yang, K. Du, et al.: Mater. Chem. Phys. Vol. 108 (2008), p.188.

Google Scholar

[24] C.R. Wang, K.B. Tang, Q. Yang, et al.: Chem. Phys. Lett. Vol. 35 (2002), p.371.

Google Scholar