Fast Deposition of Nanocrystalline Hydroxyapatite into Additive Manufactured Titanium Porous Structures

Article Preview

Abstract:

This paper reports the results of a study aimed to deposit a biomimetic apatitic coating on the porous surface of Ti alloy acetabular cups, produced with AM techniques. To this purpose, we utilized a slight supersaturated Ca/P solution at physiological values of pH and temperature. The results of the XRD, SEM and EDS investigation indicate the 6 h immersion in the calcifying solution are sufficient to provoke the deposition of a uniform coating of poor crystalline apatite on the surface and inside the porous structure of the substrates.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 493-494)

Pages:

458-461

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.R. Paital, N.B. Dahotre. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Mater. Sci. Eng. R 66 (2009)1-70.

DOI: 10.1016/j.mser.2009.05.001

Google Scholar

[2] J. Giannatsis, V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. International Journal of Advanced Manufacturing Technology 40 (2009) 116-127.

DOI: 10.1007/s00170-007-1308-1

Google Scholar

[3] N. Hijon, M.V. Cabanas, J. Pena, M. Vallet-Regi, Dip coated silicon- substituted hydroxyapatite films. Acta Biomater. 2 (2006) 567–574.

DOI: 10.1016/j.actbio.2006.05.004

Google Scholar

[4] W. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K.D.K. Luk, K.M.C. Cheung, W.W. Lu, Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surf. Coat. Technol. 201 (2007) 4685–4693.

DOI: 10.1016/j.surfcoat.2006.10.012

Google Scholar

[5] G. Socol, P. Torricelli, B. Bracci, M. Iliescu, F. Miroiu, A. Bigi, J. Werckmann, I.N. Mihailescu, Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials 25 (2004) 2539–2545.

DOI: 10.1016/j.biomaterials.2003.09.044

Google Scholar

[6] Y. Liu, G. Wu, K. de Groot. Biomimetic coatings for bone tissue engineering of critical-sized defects J. R. Soc. Interface7 (2010) S631-S647.

Google Scholar

[7] A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti, L. Sturba, Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 26 (2005) 4085–4089.

DOI: 10.1016/j.biomaterials.2004.10.034

Google Scholar

[8] A. Bigi, M. Fini, B. Bracci, E. Boanini, P. Torricelli, G. Giavaresi, N. Nicoli Aldini, A. Facchini, F. Sbaiz, R. Giardino, The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials 29 (2008).

DOI: 10.1016/j.biomaterials.2007.12.011

Google Scholar

[9] B. Bracci, P. Torricelli, S. Panzavolta, E. Boanini, R. Giardino, A. Bigi. Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103 (2009)1666–1674.

DOI: 10.1016/j.jinorgbio.2009.09.009

Google Scholar