[1]
J.M. Lane , E. Tomin , M.P. Bostrom. Biosynthetic bone grafting. ClinOrthopRelat Res.; (367 Suppl) (1999) 107-117.
Google Scholar
[2]
K. C. Dee , R. Bizios , Mini-review: Proactive biomaterials and bone tissue engineering. BiotechnolBioeng, 50(4) (1996) 438-442.
DOI: 10.1002/(sici)1097-0290(19960520)50:4<438::aid-bit11>3.0.co;2-f
Google Scholar
[3]
C.A. Vacanti, L. J. Bonassar. An overview of tissue engineered bone. ClinOrthopRelat Res. (367 Suppl): (1999)375-381.
Google Scholar
[4]
K.J. L Burg, S. Porter, J. F Kellam. Biomaterial devolopments for bone tissue engineering. Biomaterials 21, (2000) 2347-2359.
DOI: 10.1016/s0142-9612(00)00102-2
Google Scholar
[5]
K. Fu , D. W. Pack , A.M. Klibanov, R. Langer . Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res. 17(1) (2000) 100-106.
Google Scholar
[6]
J. P. Vacanti, R. Langer, J. Upton , J. J. Marler. Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev. 3; 33(1-2) (1998) 165-182.
DOI: 10.1016/s0169-409x(98)00025-8
Google Scholar
[7]
A.G. Mikos, A.J. Thorsen, L.A. Czerwonka, Y. Bao, R. Langer, D.N. Winslow, J.P. Vacanti, Preparation and characterization of poly (L-lactic acid) foams. Polymer 35(5), (1994) 1068-1077.
DOI: 10.1016/0032-3861(94)90953-9
Google Scholar
[8]
K. Whang, K. E. Healy , D. R. Elenz, E. K. Nam , D. C. Tsai , C. H. Thomas , G. W. Nuber, F.H. Glorieux, R. Travers , S.M. SpragueEngineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 5(1) (1999).
DOI: 10.1089/ten.1999.5.35
Google Scholar
[9]
S. R. Winn, J. M. Schmitt, D. Buck, Y. Hu, D. Grainger, J. O. Hollinger. Tissue-engineered bone biomimetic to regenerate calvarial critical-sized defects in athymic rats. J Biomed Mater Res , 45(4), (1999) 414–421.
DOI: 10.1002/(sici)1097-4636(19990615)45:4<414::aid-jbm17>3.0.co;2-z
Google Scholar
[10]
F. H. Martini, E. F. Bartholomew, Essentials of Anatomy and Physiology- 2nd edition, Prentice Hall, New Jersey (2000).
Google Scholar
[11]
Stein GS, Lian JB, Owen TA., Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 4(13) (1990) 3111-3123.
DOI: 10.1096/fasebj.4.13.2210157
Google Scholar
[12]
J. Sodek, S. Cheifetz. Molecular regulation of osteogenesis. In: Bone engineering. Davies JE, editor. Toronto: em squared inc. (2000), p.31–43.
Google Scholar
[13]
J. E. Davies, M.M. Hosseini. Hystodynamics of endosseous wound healing. In: Davies JE, editor. Bone Engineering. 2000, Vol. 1- P: 1-14.
Google Scholar
[14]
A. Plant , J. H. Tobias . Characterisation of the temporal sequence of osteoblast gene expression during estrogen-induced osteogenesis in female mice. J Cell Biochem. 82(4) (2001) 683-691.
DOI: 10.1002/jcb.1201
Google Scholar
[15]
P. Ducy, T. Schinke and G. Karsenty. The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science 289 (5484) (2000) 1501-1504.
DOI: 10.1126/science.289.5484.1501
Google Scholar
[16]
M. Hafezi-Ardakani, F. Moztarzadeh, M. Rabiee, A. Talebi Synthesis and characterization of nanocrystaline Merwinite (Ca3Mg(SiO4)2) via sol-gel method, Ceram Int 37 (2011) 175–180.
DOI: 10.1016/j.ceramint.2010.08.034
Google Scholar
[17]
M. Hafezi-Ardakani, F. Moztarzadeh, M. Rabiee, A. Talebi, M. Abasi-shahni, F. Fesahat, F. Sadeghian. Sol-gel synthesis and apatite-formation ability of nanostructure merwinite (Ca3MgSi2O8) as a novel bioceramic . J Ceram Process Res. 11 (2010).
DOI: 10.1016/j.ceramint.2010.08.034
Google Scholar