A Study of the Optimal Composition of the Bath Used for the Electrodeposition of Invar Alloy Thin Films

Article Preview

Abstract:

Ni-Fe alloys ranging in composition of Fe rich invar (Ni100-xFeX, where x ~ 64), have a variety of high technology applications due to their wide spectrum of physical properties. In this paper, the effects of the applied potential (-1.20V, -1.35V) and the bath composition (0.1M, 0.01M) of the Ni-Fe alloy thin films are studied. Ni100-xFeX layers were electrodeposited onto Copper substrates with a pH of about 2.5. The experiments were performed at room temperature and the deposition time was equal to 10mn for all deposited samples. The experiments were performed using electrochemical techniques, by means of cyclic voltammetry (CV) and chronoamperometry (CA). The morphology and elemental composition of the deposited films were studied by means of electron microscopy coupled to EDS analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-322

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Biallozor, and M. Lieder, Surf. Technol., 21 (1984) 1.

Google Scholar

[2] K. Rajanna and M. N. Nayak, Mater. Sci. Eng. B77 (2000) 288.

Google Scholar

[3] B. M. Siegel and L. Harris, J. Appl. Phys., 19 (1948) 739.

Google Scholar

[4] M. Sheider, Tech. -Mitt. P. T. T. 37, (1959) 465.

Google Scholar

[5] P. Huijer, M. Langendam and J. Lely, Philips Techn. Rev., 34 (1963) 144.

Google Scholar

[6] J. Y. Ping, D. G. Rancourt and R A Dunlap, J. Mag. Magn. Mater., 103, (1992) 285.

Google Scholar

[7] G. Le Gaer, R. De Araujo Pointes, D. Osso, S. Begin-Collin and Matteazzi, J. De physique IV, vol. 4, C-3, (1994) 233.

Google Scholar

[8] C. Kuhrt and L. Schultz, J. Appl. Phys., 73 (1993) (1975).

Google Scholar

[9] S. Eroglu, S. C. Zhang and G. L. Missing, J. Mater. Res., 44 (1996) 2131.

Google Scholar

[10] S. N. Srimathi and S. M. Mayanna, Met. Finish., 83 (1985) 45.

Google Scholar

[11] S. Sam, G. Fortas, A. Guittoum, N. Gabouze, S. Djebbar, Surf; Sci. 601 (2007) 4270.

DOI: 10.1016/j.susc.2007.04.107

Google Scholar

[12] I. Giouroudi, A. Ktena and E. Hristoforou, J. Opt. Adv. Mat., 6, (2004) 45.

Google Scholar

[13] H. Chiriac, M. Pletea, E. Hristoforou, Sensors & Actuators A, 91, (2001) 107.

Google Scholar

[14] H. Chiriac, M. Pletea, E. Hristoforou, Sensors & Actuators A, 81, (2000) 166.

Google Scholar

[15] A. Brenner, « Electrodeposition of alloys », vol. 1, Academic Press, New york, (1963), 77.

Google Scholar

[16] A. I. Vagramayan and Zhamagorsyants, Adsorptsya Nauka, Moscou (1969).

Google Scholar

[17] S. Messaadi, H. Medouer and A J Tosser, The 57th Annual Meeting of the International Society of Electrochemistry, ISE, S4-P86, 27 Aug. to 1 Sept., 2006 Edinburgh, UK.

Google Scholar

[18] S. Messaadi, M. Daamouche, A. Guittoum, N. Fenineche, H. Medouer and I. Zidani, Sensors Letters, (will be submitted).

DOI: 10.1166/sl.2013.2938

Google Scholar

[19] P. Houle, Thesis, University of Rouen, (1974).

Google Scholar

[20] Y. Uehara, Jap. Appl. Phys. 8 (1963) 451.

Google Scholar

[21] M. Ghorbani, A. G. Dolati and A. A. Afshar, Rus. J. Electrochem. 38 (2002) 1173.

Google Scholar

[22] Geng Shu-Jiang, Li Yan-Dong, Xiang Dong and Zhou Shi-Gang, trans. Nonferrous Met. Soc. China, 20 (2009) s226.

Google Scholar