Crystal Growth Suppression by N-Doping into Chalcogenide for Application to Next-Generation Phase Change Memory

Abstract:

Article Preview

In this work, we investigate the effect of the N-doping on microstructure and electrical properties of chalcogenide Ge2Sb2Te5 (GST) films for application to multilevel-storage phase change memory (PCM). Crystal size can be markedly reduced from 16 nm to 5 nm by N-doping into GST. The crystal growth suppression is believed to be controlled by distributed fine nitride particles. The resistivity of N-GST as a function of annealing temperature exhibits a gradual change due to the crystal growth suppression. The characteristics imply that N-GST is suitable for application to multilevel-storage PCM as the next-generation nonvolatile memory.

Info:

Periodical:

Edited by:

Osamu Hanaizumi, Masafumi Unno and Kenta Miura

Pages:

101-105

DOI:

10.4028/www.scientific.net/KEM.497.101

Citation:

Y. Yin and S. Hosaka, "Crystal Growth Suppression by N-Doping into Chalcogenide for Application to Next-Generation Phase Change Memory", Key Engineering Materials, Vol. 497, pp. 101-105, 2012

Online since:

December 2011

Authors:

Export:

Price:

$38.00

[1] S. Lai: Tech. Dig. IEDM, 2003, p.255.

[2] Y. Yin, D. Niida, K. Ota, H. Sone and S. Hosaka: Rev. Sci. Instrum. Vol. 78 (2007), p.126101.

[3] K. Nakayama, K. Kojima, F. Hayakawa, Y. Imai, A. Kitagawa and M. Suzuki: Jpn. J. Appl. Phys. Vol. 39 (2000) , p.6157.

[4] Y. Yin, H. Sone and S. Hosaka: Microelectron. Eng. Vol. 84 (2007), p.2901.

[5] F. Rao, Z. Song, M. Zhong, L. Wu, G. Feng, B. Liu, S. Feng and B. Chen: Jpn. J. Appl. Phys. Vol. 46 (2007) , p. L25.

[6] Y. Yin, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 45 (2006), p.8600.

[7] Y. Yin, H. Sone and S. Hosaka: J. Appl. Phys. Vol. 102 (2007), p.064503.

[8] D. H. Kang, D. H. Ahn, K. B. Kim, J. F. Webb and K. W. Yi: J. Appl. Phys. Vol. 94 (2003), p.3536.

[9] Y. Yin, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 44 (2005), p.6208.

[10] S. M. Kim, M. J. Shin, D. J. Choi, K. N. Lee, S. K. Hong, Y. J. Park: Thin Solid Films, Vol. 469-470 (2004), p.322.

[11] I. M. Park, I. M. Park, S. W. Jung, Y. K. Kim, H. Horii, Y. C. Joo: Appl. Phys. Lett. Vol. 94 (2009), p.061904.

[12] I. Friedrish, V. Weidenhof, W. Njoroge, P. Franz and M. Wuttig: J. Appl. Phys. Vol. 87 (2000), p.4130.

[13] H. P. Klug and L. E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley & Sons, New York, 1974) Chap. 9, p.689.

[14] B. D. Cullity: Elements of X-ray Diffraction (Addison-Wesley, New York, 1978) Chap. 3, p.102.

[15] Y. Yin, N. Higano, H. Sone and S. Hosaka: Appl. Phys. Lett. Vol. 92 (2008), p.163509.

[16] Y. Yin, T. Noguchi, H. Ohno and S. Hosaka: Appl. Phys. Lett. Vol. 95 (2009), p.133503.

In order to see related information, you need to Login.