[1]
T. Kubota, M. Miura, Y. Tominaga, and A. Mochida, Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods, Build. Environ., vol. 43, pp.1699-1708, (2008).
DOI: 10.1016/j.buildenv.2007.10.015
Google Scholar
[2]
G. Mills, Building density and interior building temperatures: A physical modeling experiment, Phys. Geogr., vol. 18, pp.195-214, (1997).
DOI: 10.1080/02723646.1997.10642616
Google Scholar
[3]
G. Theodoridis and N. Moussiopoulos, Influence of building density and roof shape on the wind and dispersion characteristics in an urban area: A numerical study, Environ. Monit. Assess., vol. 65, pp.407-415, (2000).
DOI: 10.1007/978-94-010-0932-4_44
Google Scholar
[4]
T. R. Oke, Street design and urban canopy layer climate, Energy Build., vol. 11, pp.103-113, (1988).
DOI: 10.1016/0378-7788(88)90026-6
Google Scholar
[5]
D. Robinson, Urban morphology and indicators of radiation availability, Sol. Energy, vol. 80, pp.1643-1648, (2006).
DOI: 10.1016/j.solener.2006.01.007
Google Scholar
[6]
D. Robinson and A. Stone, Solar radiation modelling in the urban context, Sol. Energy, vol. 77, pp.295-309, (2004).
DOI: 10.1016/j.solener.2004.05.010
Google Scholar
[7]
D. H. W. Li and T. N. T. Lam, An analysis of building energy performances and benefits using solar facades, Proc. Inst. Mech. Eng. Part A-J. Power Energy, vol. 222, pp.299-308, May (2008).
Google Scholar
[8]
L. Kumar, A. K. Skidmore, and E. Knowles, Modelling topographic variation in solar radiation in a GIS environment, Int. J. Geogr. Inf. Sci., vol. 11, pp.475-497, (1997).
DOI: 10.1080/136588197242266
Google Scholar
[9]
R. Dubayah and P. M. Rich, Topographic solar radiation models for GIS, Int. J. Geogr. Inf. Sys., vol. 9, pp.405-419, (1995).
Google Scholar
[10]
P. D. Fu and P. M. Rich, A geometric solar radiation model with applications in agriculture and forestry, Comput. Electron. Agric., vol. 37, pp.25-35, Dec (2002).
Google Scholar
[11]
P. Gamba and B. Houshmand, Joint analysis of SAR, LIDAR and aerial imagery for simultaneous extraction of land cover, DTM and 3D shape of buildings, Int. J. Remote Sens., vol. 23, pp.4439-4450, (2002).
DOI: 10.1080/01431160110114952
Google Scholar
[12]
B. Yu, H. Liu, J. Wu, and W. -M. Lin, Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LiDAR data and a solar flux model: a case study of downtown Houston, Int. J. Remote Sens., vol. 30, pp.4359-4385, (2009).
DOI: 10.1080/01431160802555846
Google Scholar
[13]
Y. Feng, R. Guo, and Y. Cheng, Research on three dimentional city model reconstruction based on LiDAR, Geomatics & Spatial Information Technology, vol. 31, pp.8-11, (2008).
Google Scholar
[14]
N. E. Zimmermann, Calculation of Direct Solar Radiation (N-lat_ corrected)., vol. 2007: http: /www. wsl. ch/staff/niklaus. zimmermann/programs/aml. html, 2001, p. last access: 10/20/07.
Google Scholar
[15]
O. Antonic, Modelling daily topographic solar radiation without site-specific hourly radiation data, Ecological Modelling, vol. 113, pp.31-40, (1998).
DOI: 10.1016/s0304-3800(98)00132-x
Google Scholar