Thermal Conductivity Design and Evaluation of Zirconium Phosphate Bonded Silicon Nitride Porous Ceramics

Article Preview

Abstract:

In this Paper, Five Fundamental Effective Thermal Conductivity Structural Models (Series, Parallel, Two Forms of Maxwell-Eucken and Effective Medium Theory) Were Used to Analyze and Design Silicon Nitride Porous Ceramics. Then α-Si3N4 Matrix Porous Ceramics Were Prepared with ZrP2O7 as a Binder and Thermal Conductivity of ZrP2O7 Bonded Si3N4 Porous Ceramic Was Evaluated. ZrP2O7 Bonded Si3N4 Porous Ceramic Had Open and Interconnected Pore Structure which is either in EMT or in Maxwell-Euken 2. The Thermal Conductivity of ZrP2O7 Bonded Si3N4 Porous Ceramics Changes from 2.0 to 0.5 W/m•K with Increasing the Porosity from 20% to 51%. The Obtained Results Showed that the External Porosity Material with Maxwell-Euken 2 Structure Had the Lowest Thermal Conductivity in All Porous Materials. The Open and Interconnected Pore Structure of ZrP2O7 Bonded Si3N4 Porous Ceramics Provided much Lower Thermal Conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. L. Riley. J. Am. Ceram. Soc., 83 (2000) 245-65.

Google Scholar

[2] G. Ziegler, J. Heinrich, and G. Wotting. J. Mater. Sci., 22 (1987) 3041-3086.

Google Scholar

[3] A. J. Pyzik and D. R. Beaman. J. Am. Ceram. Soc., 76 (1993) 2737-2744.

Google Scholar

[4] E. E. Callaghan. Natl. Advisory Council for Aeronautics Memo. 9 (1945) 5125-5178.

Google Scholar

[5] A. Diaz and S. Hampshire. J. Eur. Ceram. Soc., 24 (2004) 413-419.

Google Scholar

[6] D. C. C. Lam, F. F. Lange, and A. G. Evans. J. Am. Ceram. Soc., 77 (1994) 2113-2117.

Google Scholar

[7] J. F. Yang, G. J. Zhang, and T. Ohji. J. Mater. Res., 16 (2001) 1916-(1918).

Google Scholar

[8] C. Kawai and A. Yamakawa. J. Am. Ceram. Soc., 80 (1997) 2705-2708.

Google Scholar

[9] H. Chen, L. M. Hu, et al. Bull. Chin. Ceram. Soc., 4 (2002) 40-44.

Google Scholar

[10] J. K. Carson, S. J. Lovatt, et al. Int. J. Heat & Mass Trans., 48 (2005) 2150-2158.

Google Scholar

[11] A. Krach, S. G. Advani. J. Comp. Mater., 30 (1996) 933-946.

Google Scholar

[12] R.P.A. Rocha, M.E. Cruz, Numer. Heat Tr. A-Appl. 39 (2001) 179-203.

Google Scholar

[13] G. Buonanno, A. Carotenuto, Numer. Heat Tr. A-Appl. 37 (2000) 343-357.

Google Scholar

[14] M. Christon, P.J. Burns, R.A. Sommerfeld, Numer. Heat Transfer, Part A: Applicat. 25 (1994) 259-278.

Google Scholar

[15] J.C. Maxwell, A Treatise on Electricity and Magnetism, third ed., Dover Publications Inc., New York, (1954).

Google Scholar

[16] W. D. Kingery. J. Am. Ceramc. Soc., 42 (1959) 617-627.

Google Scholar

[17] D. E. Harrison, H. A. Mckinstry and F. A. Hummel. J. Am. Ceram. Soc. 37 (1954) 277-288.

Google Scholar