Resistance Pressure Sensor Based on Ag/Cu2O-PEPC-NiPc/Al Composite

Article Preview

Abstract:

This work reports on the fabrication and investigation of pressure sensor based on Ag/Cu2O-PEPC-NiPc/Al composite. The active layer of the composite was deposited by drop-casting of the blend Cu2O-PEPC-NiPc on flexible substrate. The thin film of the blend consist of cuprous oxide (Cu2O) micropowder, (5 wt. %), poly-N-epoxypropylcarbazole (PEPC), (2 wt. %) and nickel phthalocyanine (NiPc) micropowder, (3 wt. %) in benzol (1 ml). The film thickness of the composite is in the range of 20-30 μm. It is found that the fabricated sensor is sensitive to pressure and showed good repeatability. The decrease in resistance of the sensor is observed 10 times by increasing the external uniaxial pressure up to 11.7 kNm-2. The experimentally obtained results are compared with the simulated results and showed reasonable agreement with each other.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

413-419

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dimitrakopoulos, C. D., & Malenfant, P. R. L. Organic Thin Film Transistors for Large Area Electronics. Advanced Materials, 14(2), 99-117. (2002).

DOI: 10.1002/1521-4095(20020116)14:2<99::aid-adma99>3.0.co;2-9

Google Scholar

[2] Grzegorz Darlinski, Ulrich Bottger, and Raine Waser. Mechanical force sensors using organic thin-film transistors, Journal of applied physics, Vol. 97 (2005).

DOI: 10.1063/1.1888046

Google Scholar

[3] Mark Stewart, Robert S. Howell, Leo Pires, and Miltiadis K. Hatalis. Polysilicon TFT transistor technology for active matrix OLED displays, IEEE transactions on electron devices, Vol. 48 (2001).

DOI: 10.1109/16.918227

Google Scholar

[4] M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu,T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita. Flexible AM OLED panel driven by bottom contact OTFTs, IEEE electron device letters, Vol. 27 (2006).

DOI: 10.1109/led.2006.870413

Google Scholar

[5] Soyoun Jun, Taeksoo Ji, Jining Xie and Vijay K. Varadan. Flexible strain sensors based on pentacene-carbon nanotube copmposite thin films, Proc. Of 7th IEEE international conference of nanotechnology, August 2-5, 2007, Hogkong.

DOI: 10.1109/nano.2007.4601212

Google Scholar

[6] Khan MA, Gondal, MA Khawaja, EE. A gas Pressure Sensor based on ZrO2 Thin Films for use at high temperatures, Journal of Electronics, Vol. 87, pp.227-234.

DOI: 10.1080/002072100132363

Google Scholar

[7] Chong Cheong Wei, Muhammad Yahaya and Muhamad Mat Salleh. Fabrication of Bi-Ti-O Thin Film Pressure Sensor prepared by electron beam evaporation method, Solid state Science and Technology, Vol. 13 (2005), pp.244-250.

DOI: 10.1109/smelec.2004.1620957

Google Scholar

[8] Estibalitz Ochoteco, Tomasz Sikora, Haritz Macicior, Jose A. Pomposo, Hans Grande, Javier Rodríguez. From Conducting Polymers to Flexible Pressure Sensors: A Success History in Organic Electronics.

Google Scholar

[9] I. Munanza and A. bonfiglio. Pressure sensing using a completely flexible organic transistor, Biosensors and Bioelectronics, Vol. 22 (2007), pp.2775-2779.

DOI: 10.1016/j.bios.2007.01.021

Google Scholar

[10] Takao Someya and Takayasu Sakurai. Integration of Organic Field-Effect Transistors and Rubbery Pressure Sensors for Artificial Skin Applications, IEEE (2003).

Google Scholar

[11] Mutabar Shah, Muhammad Hassan Sayyad and Khasan S. Karimov. Fabrication and Study of Nickel Phthalocyanine based Surface Type Capacitive Sensors, World Academy of Science, Engineering and Technology, (2008).

Google Scholar

[12] Benny Joseph and C. S. Menon. Studies on the Optical Properties and Surface Morphology of Nickel Phthalocyanine Thin Films, E-journal of Chemistry, Vol. 4 (2007).

Google Scholar

[13] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, T. Sakurai. Thin film deposition of Cu2O and application for solar cells, Solar Energy, Vol. 80 (2006).

DOI: 10.1016/j.solener.2005.10.012

Google Scholar

[14] Kh.S. Karimov, M. Saleem, Zubair Ahmad, M. Farooq, Z.M. Karieva, Adam Khan. Resistive and Capacitive Cu2O-PEPC Composite Based Displacement Transducer, Physica Scripta, Vol. 82 (2010).

DOI: 10.1088/0031-8949/82/06/065702

Google Scholar

[15] Kh. S. Karimov, K. Akhmedov, I. Qazi, T. A. Khan, JOAM, Vol. 9 (2007), pp.2867-2872.

Google Scholar

[16] Kh. Akhmedov, Synthesis, properties and application of carbazolile containing 254 polymers, Thesis of D. Sc., Academy of Sciences, Dushanbe, Tajikistan, (1998).

Google Scholar

[17] J.D. Irwin. Basic Engineering Circuit Analysis, Sixth Edition. John Wiley & Sons, New York (1999).

Google Scholar

[18] F. Gutman, L.E. Lyons, Organic semiconductor, Part A, (Robert E. Krieger Publishing Company, Malabar, Florida 1980), p.251.

Google Scholar

[19] F. Gutman, H. Keyzer, L. E. Lyons, R.B. Somoano, Organic semiconductors, Part B, (Robert E. Krieger Publishing Company, Malabar, Florida 1983), p.122.

Google Scholar

[20] N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, Oxford: Clarendon Press, 1971 , pp.96-123.

Google Scholar

[21] C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, Organic Photovoltaics. Concepts and Realization, Springer-Verlag, Berlin, Heidelberg, (2003).

DOI: 10.1007/978-3-662-05187-0

Google Scholar

[22] H. Bottger, V.V. Bryksin, Hopping Conductions in Solids, Akademie Verlag, Berlin, (1985).

Google Scholar

[23] R.G. Irvine, Operational Amplifiers Characteristics and Applications, Third Edition, Prentice Hall, Englewood Cliffs, NJ, (1994).

Google Scholar