Structural, Electrical and Dielectric Properties of Nanocrystalline Mg-Zn Ferrites

Article Preview

Abstract:

The nanocrystalline Mg-Zn ferrites having general formula Mg1-xZnxFe2O4 (x=0, 0.1, 0.2, 0.3, 0.4, 0. 5) were prepared by WOWS sol-gel route. All prepared samples were sintered at 700°C for 2 h. X-ray powder diffraction (XRD) technique was used to investigate structural properties of the samples. The crystal structure was found to be spinel. The crystallite size, lattice parameters and porosity of samples were calculated by XRD data analysis as function of zinc concentration. The crystallite size for each sample was calculated using the Scherrer formula considering the most intense (3 1 1) peak and the range obtained was 34-68 nm. The dielectric constant (ε), dielectric loss tangent () and AC electrical conductivity of nanocrystalline Mg-Zn ferrites are investigated as a function of frequency. The dielectric constant (ε), dielectric loss tangent () increased with increase of Zn concentration. All the electrical properties are explained in accordance with MaxwellWagner model and Koops phenomenological theory.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

51-57

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Q. Sun: Prog. Solid State Chem. Vol. 35 (2007), p- 1.

Google Scholar

[2] P.A. Shaikha, R.C. Kambalea, A.V. Raoa and Y.D. Kolekar: J. Alloys. Compd. Vol. 492 (2010), p- 590.

Google Scholar

[3] I.H. Gul and A. Maqsood: J. Alloys. Compd. Vol. 465 (2008), p-227.

Google Scholar

[4] H. Mosallaei, K. Sarabandi: IEEE Trans. Antennas Propagat. Vol. 52 (2004), p-1558.

Google Scholar

[5] K. Buell, H. Mosallaei, K. Sarabandi: IEEE Trans. Microwave Theory Tech.: Vol. 54A (2006), p- 135.

Google Scholar

[6] R.K. Mongia, A. Ittipiboon, M. Cuhaci: Electron Lett. Vol. 92 (1994), p-1362.

Google Scholar

[7] J. S. Colburn, Y. Rahmat-Samii: IEEE Trans. Antennas Propagat. Vol. 47 (1999), p- 1785.

DOI: 10.1109/8.817654

Google Scholar

[8] L.B. Kong, Z.W. G.Q. Li, Lin and Y B Gan: IEEE Trans. Magn. Vol. 44 (2008), p-559.

Google Scholar

[9] M. George, S. S. Nair, A. M. John, P. A. Joy, M. R. Anantharaman: J. Phys. D: Appl. Phys. Vol. 39 (2006) p-900.

Google Scholar

[10] M. J. Iqbal, M. R. Siddiquah, J. Magn. Magn. Mater. Vol. 320 (2008), p- 845.

Google Scholar

[11] M Naeem, N A Shah, I H Gul and A Maqsood: J. Alloys. Compd. Vol. 487 (2009), p- 739.

Google Scholar

[12] J C Maxwell1929 Electricity and Magnetism vol 1 (Oxford University Press, Oxford section 328).

Google Scholar

[13] K W Wagner: Ann. Phys. Vol. 40 (1913), p- 817.

Google Scholar

[14] C G Koops: Phys. Rev. Vol. 83 (1951) 121.

Google Scholar

[15] A K Singh, T C Goel and R G Mendiratta: J. Appl. Phys. Vol. 91 (2002), p- 6626.

Google Scholar

[16] M Ajmal and A Maqsood: Mater. Lett. Vol. 62 (2008), p-(2077).

Google Scholar

[17] A M A E Ata, S M Attia and T M Meaz: Solid State Sci. Vol. 6 (2004), p- 61.

Google Scholar

[18] K. Iwauchi: J. Appl. Phys. Vol. 10 (1971), p-1520.

Google Scholar

[19] A. Verma, T.C. Goal, R. G. Mendirata and M. Alam: Mater. Sci. Eng. Vol. 60 (1999), p- 156.

Google Scholar

[20] S. Hussain and A. Maqsood: J. Magn. Magn. Mater. Vol. 316 (2007), p-73.

Google Scholar

[21] L Li, Z Lan, Z Yu, K Sun and Z Xu: J. Alloys. Compd. Vol. 476 (2009), p-755.

Google Scholar

[22] W Bayoumi: J. Mater. Sci. Vol. 42 (2007), p- 8254.

Google Scholar

[23] V R K Murthy and Viswanathan: Ferrite Materials (Narosa Publishing House, 1990).

Google Scholar

[24] A Verma, T C Goel, R G Mendiratta and P Kishan : J. Magn. Magn. Mater. Vol. 208 (2000), p- 13.

Google Scholar