An Inquisitive into the Indirect Measurement and Comparison of the Viscosity of Nanoconfined Polystyrene Nanoparticles

Article Preview

Abstract:

The effects of nanoconfinement on the dynamic and the glass transition (Tg) of polymers remains the focus of a lot of research since over a decade. Particularly, the glass transition temperature (Tg) and the dynamic of polystyrene (PS) were found to be altered by nanoconfinement in thin films and on the bulk free-surface. However, the dynamic of polymer nanoconfined in nanoparticles has not been investigated, even though the close-packed nanoparticle geometry is commonly used in many applications such as waterborne coatings. We investigate the dynamic of polystyrene in nanoparticles by monitoring the closure of voids (interstices) between PS nanoparticles in the close-packed structure. Void-closure during the passage from the close-packed particles to bulk PS is monitored using small angle neutron scattering at the bulk Tg (100 °C). The relaxation time (τ) and the apparent viscosity (η) of nanoconfined polystyrene estimated from the void-closure decay is found to decrease only by ~2 times for particle diameters between 93 nm and 42 nm. These results infer that dynamic of nanoconfined PS in nanoparticles at the bulk Tg is not different from that of bulk polystyrene.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

58-66

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Alcoutlabi and G. B. McKenna, Effects of confinement on material behaviour at the nanometer scale, J. of Phys.: Condens. Matter, 17 (2005) R461–R524.

DOI: 10.1088/0953-8984/17/15/r01

Google Scholar

[2] J.A. Forrest, A decade of dynamics in thin films of polystyrene: where are we now? Eur. Phys. J. E, 8 (2002) 261.

DOI: 10.1007/pl00022336

Google Scholar

[3] J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, J. R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films, Phys. Rev. Lett., 77 (1996) (2002).

DOI: 10.1103/physrevlett.77.2002

Google Scholar

[4] J. L. Keddie, R. A. L. Jones, and R. A. Cory, Size-dependent depression of the glass transition temperature in polymer films, Euro phys. Lett. 27 (1994) 59-64.

DOI: 10.1209/0295-5075/27/1/011

Google Scholar

[5] S. Kawana; R. A. L. Jones, Character of the glass transition in thin supported polymer films, Phys. Rev. E, 63 (2001) 021501.

DOI: 10.1103/physreve.63.021501

Google Scholar

[6] K. Fukao, and Y. Miyamoto, Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene, Phys. Rev. E, 61 (2000) 1743–54.

DOI: 10.1103/physreve.61.1743

Google Scholar

[7] C. Rotella, S. Napolitano, M. Wübbenhorst, Segmental mobility and glass transition temperature of freely suspended ultrathin polymer membranes, Macromolecules, 42 (2009) 1415.

DOI: 10.1021/ma8027968

Google Scholar

[8] B. DeMaggio, W. E. Frieze, D. W. Gidley, M. Zhu, H. A. Hristov, and A. F. Yee, Interface and surface effects on the glass transition in thin polystyrene films, Phys. Rev. Lett. 78 (1994) 1524-1527.

DOI: 10.1103/physrevlett.78.1524

Google Scholar

[9] C. J. Ellison, and J. M. Torkelson, The distribution of glass-transition temperatures in nanoscopically confined glass formers, Nature Materials, 2 (2003) 695-700.

DOI: 10.1038/nmat980

Google Scholar

[10] Varnik, J. Baschnagel, and K. Binder, Reduction of the glass transition temperature in polymer films: a molecular-dynamics study, Phys. Rev. E, 65 (2002) 021507.

DOI: 10.1103/physreve.65.021507

Google Scholar

[11] R.A. Riggleman, K. Yoshimoto, J.F. Douglas, J.J. dePablo, Influence of confinement on the fragility of antiplasticized and pure polymer films, Phys. Rev. Lett. 97 (2006) 045502.

DOI: 10.1103/physrevlett.97.045502

Google Scholar

[12] J. A. Forrest, and J. Mattsson, Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics, Phys. Rev. E. 61 (2000) R53-R56.

DOI: 10.1103/physreve.61.r53

Google Scholar

[13] K. Shin, S. Obukhov, J. -T. Chen, J. Huh, S. Mok, P. Dobryal, P. Thiyagarajan, T. P. Russell, Enhanced mobility of confined polymers, Nature Mats. 6 (2007) 961.

DOI: 10.1038/nmat2031

Google Scholar

[14] P. A. O'Connell, and G. B. McKenna, Rheological measurements of the thermo-viscoelastic response of ultrathin polymer films, Science 307 (2005) 1760-1763.

DOI: 10.1126/science.1105658

Google Scholar

[15] L. Si, M. V. Massa, K. Dalnoki-Veress, H. R. Brown, R. A. L. Jones, chain entanglement in thin freestanding polymer films, Phys. Rev. Lett. 94 (2005) 127801.

DOI: 10.1103/physrevlett.94.127801

Google Scholar

[16] Z. Fakhraai, and J. A. Forrest, Measuring the surface dynamics of glassy polymers, Science 319 (2008) 600–604.

DOI: 10.1126/science.1151205

Google Scholar

[17] D. Qi, Z. Fakhraai,  J. A. Forest, Substrate and chain size dependence of near surface dynamics of glassy polymers, Phys Rev. Lett, 101 (2008) 096101.

DOI: 10.1103/physrevlett.101.096101

Google Scholar

[18] P. Gasemjit, D. Johannsmann, Thickness of the soft layer on glassy polystyrene surfaces, J. Polym. Sci. B, 44 (2006) 3031.

DOI: 10.1002/polb.20922

Google Scholar

[19] R. M. Papaleo, R. Leal, W. H. Carreira, L. G. Barbosa, I. Bello,. A. Bulla, Relaxation times of nanoscale deformations on the surface of a polymer thin film near and below the glass transition, Phys. Rev. B, 74 (2006) 094203.

DOI: 10.1103/physrevb.74.094203

Google Scholar

[20] Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël, Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting, Nature Materials, 4 (2005) 754.

DOI: 10.1038/nmat1484

Google Scholar

[21] Bodiguel, C. Fretigny, Reduced viscosity in thin polymer films, Phys. Rev. Lett. 97 (2006) 266105.

DOI: 10.1103/physrevlett.97.266105

Google Scholar

[22] C. B. Roth, J. R. Dutcher, Hole growth in freely standing polystyrene films probed using a differential pressure experiment, Phy. Rev. E., 72 (2005) 021803.

DOI: 10.1103/physreve.72.021803

Google Scholar

[23] B. Frank, A. P. Gast, T. P. Russell, H. R. Brown, C. Hawker, Polymer mobility in thin films, Macromolecules 29 (1996) 6531–6534.

DOI: 10.1021/ma960749n

Google Scholar

[24] T. Sasaki, A. Shimizu, T. H. Mourey, C. T. Thurau, and M. D. Ediger, Glass transition of small polystyrene spheres in aqueous suspensions, J. Chem. Phys. 119 (2003) 8730-8735.

DOI: 10.1063/1.1613257

Google Scholar

[25] S. Herminghaus, R. Seemann, and K. Landfester, Polymer surface melting mediated by capillary waves, Phys. Rev. Lett. 93 (2004) 017801.

DOI: 10.1103/physrevlett.93.017801

Google Scholar

[26] Y. Rharbi, Reduction of the glass transition temperature of confined polystyrene nanoparticles in nanoblends, Phys. Rev. E, 77 (2008) 031806.

DOI: 10.1103/physreve.77.031806

Google Scholar

[27] M. Yousfi, L. Porcar, P. Lindner, F. Boué, Y. Rharbi, A novel method for studying the dynamics of polymers confined in spherical nanoparticles in nanoblends, Macromolecules, 42 (2009) 2190.

DOI: 10.1021/ma802734j

Google Scholar

[28] M. A Winnik, Latex film formation, Current opinion in colloid & interface science, 2 (1997) 192.

DOI: 10.1016/s1359-0294(97)80026-x

Google Scholar

[29] P.A. Steward, J. Hern and. M.C. Wilkinson, An overview of polymer latex film formation and properties, Adv. Colloid Interface Sci., 86 (2000) 195.

DOI: 10.1016/s0001-8686(99)00037-8

Google Scholar

[30] W. B. Russel, N. Wu, W. Man, Generalized Hertzian model for the deformation and cracking of colloidal packings saturated with liquid, Langmuir, 24 (2008) 1721–1730.

DOI: 10.1021/la702633t

Google Scholar

[31] Q. Nawaz, Y. Rharbi, Effect of the nanomechanical properties of polymer nanoparticles on crack patterns during film formation via drying of colloidal suspension, Macromolecules, 41/15 (2008) 5928–5934.

DOI: 10.1021/ma7028049

Google Scholar

[32] B. Cabane, Y. Chevalier, C. Pichot, C. GraiIlal, M. Joanicot, K. Wong, J. Maquet, P. Lindner, Film formation with latex particles, Colloid Polym. Sci. 270 (1992) 806.

DOI: 10.1007/bf00776153

Google Scholar

[33] Y. Rharbi, F. Boué, M. Joanicot, B. Cabane, Structures of stretched latex films, Macromolecules, 29 (1996) 4346.

DOI: 10.1021/ma951142u

Google Scholar

[34] Feng, M. A. Winnik, R. R. Shivers, B. Clubb, Polymer blend latex films: morphology and transparency, Macromolecules, 28 (1995) 7671.

DOI: 10.1021/ma00127a013

Google Scholar

[35] N. Dingenouts, M. Ballauff, First stage of film formation by latexes investigated by small-angle x-ray scattering, Langmuir 15 (1999) 3283.

DOI: 10.1021/la9816510

Google Scholar

[36] Goudy, M. L. Gee, S. Biggs, S. Underwood, Atomic force microscopy study of polystyrene latex film morphology: effects of aging and annealing, Langmuir 11 (1995) 4454.

DOI: 10.1021/la00011a045

Google Scholar

[37] E. Pérez; J. Lang, Flattening of latex film surface and polymer chain diffusion, Langmuir 16 (2000) 1874.

DOI: 10.1021/la990595f

Google Scholar

[38] E. Pérez; J. Lang, Flattening of latex film surface:  theory and experiments by atomic force microscopy, Macromolecules, 32 (1999) 1626.

DOI: 10.1021/ma9704121

Google Scholar

[39] F. Lin, D. J. Meier, A study of latex film formation by atomic force microscopy. 2. film formation vs rheological properties: theory and experiment, Langmuir, 12 (1996) 2774.

DOI: 10.1021/la951554w

Google Scholar

[40] E. Arda, V. Bulmus, E. Pıskın, Ö. Pekcan, Molecular weight effect on latex film formation from polystyrene particles: a photon transmission study, Journal of Colloid and Interface Science, 213 () 160–168, (1999).

DOI: 10.1006/jcis.1998.6051

Google Scholar

[41] H. Hertz, J. Reine Angew. Math., 92 (1881) 156.

Google Scholar

[42] H. Hertz, Gesammelte Werke, 1 (1895) 155.

Google Scholar

[43] B. Du; O. K. C. Tsui ; Q. Zhang ; T. He, study of elastic modulus and yield strength of polymer thin films using atomic force microscopy, Langmuir, 17 (2001) 3286.

DOI: 10.1021/la001434a

Google Scholar

[44] M. Doi; S. F. Edwards, The theory of polymer dynamics; Oxford science publications: New York, section 3. 6, (1986).

Google Scholar

[45] Q. Nawaz and Y. Rharbi, Various modes of void closure during dry-sintering of closed packed nanoparticles, Langmuir, 26/2 (2010) 1226–1231.

DOI: 10.1021/la902381b

Google Scholar

[46] J. D. Ferry, Viscoelastic properties of polymers, John Wiley and sons, (1980).

Google Scholar

[47] Y. H. Lin, Whole range of chain dynamics in entangled polystyrene melts revealed from creep compliance: thermorheological complexity between glassy-relaxation region and rubber-to-fluid region, J. Phys. Chem. B. 109 (2005) 17654.

DOI: 10.1021/jp040568k

Google Scholar

[48] Y. Rharbi, M. Yousfi, L. Porcar, Q. Nawaz, Methods for probing the long range dynamic of confined polymer in nanoparticles using small angles neutrons scattering, Can. J. Chem. 88/3 (2010) 288 – 297.

DOI: 10.1139/v09-178

Google Scholar