[1]
M. Alcoutlabi and G. B. McKenna, Effects of confinement on material behaviour at the nanometer scale, J. of Phys.: Condens. Matter, 17 (2005) R461–R524.
DOI: 10.1088/0953-8984/17/15/r01
Google Scholar
[2]
J.A. Forrest, A decade of dynamics in thin films of polystyrene: where are we now? Eur. Phys. J. E, 8 (2002) 261.
DOI: 10.1007/pl00022336
Google Scholar
[3]
J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, J. R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films, Phys. Rev. Lett., 77 (1996) (2002).
DOI: 10.1103/physrevlett.77.2002
Google Scholar
[4]
J. L. Keddie, R. A. L. Jones, and R. A. Cory, Size-dependent depression of the glass transition temperature in polymer films, Euro phys. Lett. 27 (1994) 59-64.
DOI: 10.1209/0295-5075/27/1/011
Google Scholar
[5]
S. Kawana; R. A. L. Jones, Character of the glass transition in thin supported polymer films, Phys. Rev. E, 63 (2001) 021501.
DOI: 10.1103/physreve.63.021501
Google Scholar
[6]
K. Fukao, and Y. Miyamoto, Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene, Phys. Rev. E, 61 (2000) 1743–54.
DOI: 10.1103/physreve.61.1743
Google Scholar
[7]
C. Rotella, S. Napolitano, M. Wübbenhorst, Segmental mobility and glass transition temperature of freely suspended ultrathin polymer membranes, Macromolecules, 42 (2009) 1415.
DOI: 10.1021/ma8027968
Google Scholar
[8]
B. DeMaggio, W. E. Frieze, D. W. Gidley, M. Zhu, H. A. Hristov, and A. F. Yee, Interface and surface effects on the glass transition in thin polystyrene films, Phys. Rev. Lett. 78 (1994) 1524-1527.
DOI: 10.1103/physrevlett.78.1524
Google Scholar
[9]
C. J. Ellison, and J. M. Torkelson, The distribution of glass-transition temperatures in nanoscopically confined glass formers, Nature Materials, 2 (2003) 695-700.
DOI: 10.1038/nmat980
Google Scholar
[10]
Varnik, J. Baschnagel, and K. Binder, Reduction of the glass transition temperature in polymer films: a molecular-dynamics study, Phys. Rev. E, 65 (2002) 021507.
DOI: 10.1103/physreve.65.021507
Google Scholar
[11]
R.A. Riggleman, K. Yoshimoto, J.F. Douglas, J.J. dePablo, Influence of confinement on the fragility of antiplasticized and pure polymer films, Phys. Rev. Lett. 97 (2006) 045502.
DOI: 10.1103/physrevlett.97.045502
Google Scholar
[12]
J. A. Forrest, and J. Mattsson, Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics, Phys. Rev. E. 61 (2000) R53-R56.
DOI: 10.1103/physreve.61.r53
Google Scholar
[13]
K. Shin, S. Obukhov, J. -T. Chen, J. Huh, S. Mok, P. Dobryal, P. Thiyagarajan, T. P. Russell, Enhanced mobility of confined polymers, Nature Mats. 6 (2007) 961.
DOI: 10.1038/nmat2031
Google Scholar
[14]
P. A. O'Connell, and G. B. McKenna, Rheological measurements of the thermo-viscoelastic response of ultrathin polymer films, Science 307 (2005) 1760-1763.
DOI: 10.1126/science.1105658
Google Scholar
[15]
L. Si, M. V. Massa, K. Dalnoki-Veress, H. R. Brown, R. A. L. Jones, chain entanglement in thin freestanding polymer films, Phys. Rev. Lett. 94 (2005) 127801.
DOI: 10.1103/physrevlett.94.127801
Google Scholar
[16]
Z. Fakhraai, and J. A. Forrest, Measuring the surface dynamics of glassy polymers, Science 319 (2008) 600–604.
DOI: 10.1126/science.1151205
Google Scholar
[17]
D. Qi, Z. Fakhraai, J. A. Forest, Substrate and chain size dependence of near surface dynamics of glassy polymers, Phys Rev. Lett, 101 (2008) 096101.
DOI: 10.1103/physrevlett.101.096101
Google Scholar
[18]
P. Gasemjit, D. Johannsmann, Thickness of the soft layer on glassy polystyrene surfaces, J. Polym. Sci. B, 44 (2006) 3031.
DOI: 10.1002/polb.20922
Google Scholar
[19]
R. M. Papaleo, R. Leal, W. H. Carreira, L. G. Barbosa, I. Bello,. A. Bulla, Relaxation times of nanoscale deformations on the surface of a polymer thin film near and below the glass transition, Phys. Rev. B, 74 (2006) 094203.
DOI: 10.1103/physrevb.74.094203
Google Scholar
[20]
Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël, Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting, Nature Materials, 4 (2005) 754.
DOI: 10.1038/nmat1484
Google Scholar
[21]
Bodiguel, C. Fretigny, Reduced viscosity in thin polymer films, Phys. Rev. Lett. 97 (2006) 266105.
DOI: 10.1103/physrevlett.97.266105
Google Scholar
[22]
C. B. Roth, J. R. Dutcher, Hole growth in freely standing polystyrene films probed using a differential pressure experiment, Phy. Rev. E., 72 (2005) 021803.
DOI: 10.1103/physreve.72.021803
Google Scholar
[23]
B. Frank, A. P. Gast, T. P. Russell, H. R. Brown, C. Hawker, Polymer mobility in thin films, Macromolecules 29 (1996) 6531–6534.
DOI: 10.1021/ma960749n
Google Scholar
[24]
T. Sasaki, A. Shimizu, T. H. Mourey, C. T. Thurau, and M. D. Ediger, Glass transition of small polystyrene spheres in aqueous suspensions, J. Chem. Phys. 119 (2003) 8730-8735.
DOI: 10.1063/1.1613257
Google Scholar
[25]
S. Herminghaus, R. Seemann, and K. Landfester, Polymer surface melting mediated by capillary waves, Phys. Rev. Lett. 93 (2004) 017801.
DOI: 10.1103/physrevlett.93.017801
Google Scholar
[26]
Y. Rharbi, Reduction of the glass transition temperature of confined polystyrene nanoparticles in nanoblends, Phys. Rev. E, 77 (2008) 031806.
DOI: 10.1103/physreve.77.031806
Google Scholar
[27]
M. Yousfi, L. Porcar, P. Lindner, F. Boué, Y. Rharbi, A novel method for studying the dynamics of polymers confined in spherical nanoparticles in nanoblends, Macromolecules, 42 (2009) 2190.
DOI: 10.1021/ma802734j
Google Scholar
[28]
M. A Winnik, Latex film formation, Current opinion in colloid & interface science, 2 (1997) 192.
DOI: 10.1016/s1359-0294(97)80026-x
Google Scholar
[29]
P.A. Steward, J. Hern and. M.C. Wilkinson, An overview of polymer latex film formation and properties, Adv. Colloid Interface Sci., 86 (2000) 195.
DOI: 10.1016/s0001-8686(99)00037-8
Google Scholar
[30]
W. B. Russel, N. Wu, W. Man, Generalized Hertzian model for the deformation and cracking of colloidal packings saturated with liquid, Langmuir, 24 (2008) 1721–1730.
DOI: 10.1021/la702633t
Google Scholar
[31]
Q. Nawaz, Y. Rharbi, Effect of the nanomechanical properties of polymer nanoparticles on crack patterns during film formation via drying of colloidal suspension, Macromolecules, 41/15 (2008) 5928–5934.
DOI: 10.1021/ma7028049
Google Scholar
[32]
B. Cabane, Y. Chevalier, C. Pichot, C. GraiIlal, M. Joanicot, K. Wong, J. Maquet, P. Lindner, Film formation with latex particles, Colloid Polym. Sci. 270 (1992) 806.
DOI: 10.1007/bf00776153
Google Scholar
[33]
Y. Rharbi, F. Boué, M. Joanicot, B. Cabane, Structures of stretched latex films, Macromolecules, 29 (1996) 4346.
DOI: 10.1021/ma951142u
Google Scholar
[34]
Feng, M. A. Winnik, R. R. Shivers, B. Clubb, Polymer blend latex films: morphology and transparency, Macromolecules, 28 (1995) 7671.
DOI: 10.1021/ma00127a013
Google Scholar
[35]
N. Dingenouts, M. Ballauff, First stage of film formation by latexes investigated by small-angle x-ray scattering, Langmuir 15 (1999) 3283.
DOI: 10.1021/la9816510
Google Scholar
[36]
Goudy, M. L. Gee, S. Biggs, S. Underwood, Atomic force microscopy study of polystyrene latex film morphology: effects of aging and annealing, Langmuir 11 (1995) 4454.
DOI: 10.1021/la00011a045
Google Scholar
[37]
E. Pérez; J. Lang, Flattening of latex film surface and polymer chain diffusion, Langmuir 16 (2000) 1874.
DOI: 10.1021/la990595f
Google Scholar
[38]
E. Pérez; J. Lang, Flattening of latex film surface: theory and experiments by atomic force microscopy, Macromolecules, 32 (1999) 1626.
DOI: 10.1021/ma9704121
Google Scholar
[39]
F. Lin, D. J. Meier, A study of latex film formation by atomic force microscopy. 2. film formation vs rheological properties: theory and experiment, Langmuir, 12 (1996) 2774.
DOI: 10.1021/la951554w
Google Scholar
[40]
E. Arda, V. Bulmus, E. Pıskın, Ö. Pekcan, Molecular weight effect on latex film formation from polystyrene particles: a photon transmission study, Journal of Colloid and Interface Science, 213 () 160–168, (1999).
DOI: 10.1006/jcis.1998.6051
Google Scholar
[41]
H. Hertz, J. Reine Angew. Math., 92 (1881) 156.
Google Scholar
[42]
H. Hertz, Gesammelte Werke, 1 (1895) 155.
Google Scholar
[43]
B. Du; O. K. C. Tsui ; Q. Zhang ; T. He, study of elastic modulus and yield strength of polymer thin films using atomic force microscopy, Langmuir, 17 (2001) 3286.
DOI: 10.1021/la001434a
Google Scholar
[44]
M. Doi; S. F. Edwards, The theory of polymer dynamics; Oxford science publications: New York, section 3. 6, (1986).
Google Scholar
[45]
Q. Nawaz and Y. Rharbi, Various modes of void closure during dry-sintering of closed packed nanoparticles, Langmuir, 26/2 (2010) 1226–1231.
DOI: 10.1021/la902381b
Google Scholar
[46]
J. D. Ferry, Viscoelastic properties of polymers, John Wiley and sons, (1980).
Google Scholar
[47]
Y. H. Lin, Whole range of chain dynamics in entangled polystyrene melts revealed from creep compliance: thermorheological complexity between glassy-relaxation region and rubber-to-fluid region, J. Phys. Chem. B. 109 (2005) 17654.
DOI: 10.1021/jp040568k
Google Scholar
[48]
Y. Rharbi, M. Yousfi, L. Porcar, Q. Nawaz, Methods for probing the long range dynamic of confined polymer in nanoparticles using small angles neutrons scattering, Can. J. Chem. 88/3 (2010) 288 – 297.
DOI: 10.1139/v09-178
Google Scholar