Effect of Grain Size and Load Ratio on the near Threshold Stress Intensity Factor during Fatigue Crack Propagation of Dual Phase Steel

Article Preview

Abstract:

Fatigue crack growth near-threshold stress intensity factor is affected by the microstructure of the material. A large portion of microstructural influence is due to the change in grain size of the material. Grain size in the dual phase steel was varied and found that the near-threshold stress intensity factor (rKth) increased as the grain size increased. Influence of load ratio nearthreshold fatigue crack propagation was also studied. It was observed that the near-threshold stress intensity range, rKth for fatigue growth decreased with increasing load ratio.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 510-511)

Pages:

67-74

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Masounave and J. P. Bailon, Scripta Metallurgica, Vol. 9, 1975, pp.723-730.

Google Scholar

[2] M. Okayasu, K. Sato M. Mizuno, D.Y. Hwang and D.H. Shin, Int. J. Fatigue, 30, 8, 2008, pp.1358-1365.

Google Scholar

[3] A.B. El-Shabasy, and J. J. Lewandowski, Inter. J. Fatigue, 26, 3, 2004, pp.305-309.

Google Scholar

[4] K. Masao, S. Etuso, O. Akihiko and K. Michio, Trans, National Research Inst. Metal 1985, Vol. 27 No. 2, pp.97-113.

Google Scholar

[5] J. Andersson, Inter. J. Fatigue, 27, 8, 2005, pp.847-852.

Google Scholar

[6] P. K. Liaw T. R., Leax, V. P. Swaminathan and J. K. Donald Scripta Metallurgica, 1982, Vol. 16, pp.871-876.

DOI: 10.1016/0036-9748(82)90247-2

Google Scholar

[7] W. F. Brown, Jr. and J. E. Srawley, ASTM STP 410, 1966, p.12.

Google Scholar

[8] R. O. Richie, Metal. Science, 1977, 11, pp.368-381.

Google Scholar

[9] M. T. Xu. T. H. Topper, J. Eng. Mat. And Tech., Vol. 107, 1985, pp.19-25.

Google Scholar

[10] D. L. Chen, Z. G. Wang, X. X. Jaing, S. H. Ali and C. H. Shih, Basic Mechanism in Fatigue of Metals P. Lakas and J. Polak, 1988, pp.12-14.

Google Scholar

[11] J. Masounave and J. P. Bailon, Scripta Metallurgica, 1976, Vol. 10, pp.165-170.

Google Scholar

[12] M. F. Carlson and R. O. Ritchie, Scripta Metallurgica, 1977, Vol. 11, pp.113-118.

Google Scholar

[13] J. P. Lucas and W. W. Gerberich, Mat. Sci. and Eng. 1981, Vol. 51, pp.203-212.

Google Scholar

[14] J. P. Benson, Met – Sci. 1979, Vol. 13, p-535.

Google Scholar

[15] F. George Vander Vourt, Practical Applications of Quantitative Metallography, ASTM, 839, 1984, pp.85-131.

Google Scholar

[16] J. A. Wasynchzuk, R. O. Ritchie and G. Thomas, Mater. Sci. Eng. 01. 62, 1984, pp.79-93.

Google Scholar

[17] M. K. Tseng, I. Jiang and Z. H. Lai, Fatigue Prevention and Design, Amsterdam 1986, pp.21-24.

Google Scholar

[18] J. Masounave and J. P. Bailon, Scripta Metallurgica, 1975, Vol. 9, pp.723-730.

Google Scholar

[19] W. W. Gerberich and N. R. Moody, ASTM spec. Tech. Publ. 675, 1979. p.292.

Google Scholar

[20] R. O. Ritchie, in proc, Int. Conf. On Analytical and Experimental Fracture Mechanics, Rome, (1980).

Google Scholar