[1]
J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Superconductivity at 39 K in magnesium diboride, Nature 410 (2001) 63-64.
DOI: 10.1038/35065039
Google Scholar
[2]
C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2, Supercond. Sci. Technol. 14 (2001) R115-R146.
DOI: 10.1088/0953-2048/14/11/201
Google Scholar
[3]
C. Q. Jin, S. C. Li, R. C. Yu, et al., Property studies of MgB2 superconductor directly synthesized using high pressure, J. Phys.: Condens. Matter. 14 (2002) 10771-10778.
DOI: 10.1088/0953-8984/14/44/375
Google Scholar
[4]
Y. D. Gao, J. Ding, G. V. S. Rao, et al., Magnetic properties and superconductivity of mechanically alloyed (Mg1-xFex)B2 samples with x=0.0-0.4, J. Appl. Phys. 93(10) (2003) 8656-8658.
DOI: 10.1063/1.1556286
Google Scholar
[5]
S. Jin, H. Mavoori, R. B. van Dover, High critical currents in iron-clad superconducting MgB2 wires, Nature 411 (2001) 563-565.
DOI: 10.1038/35079030
Google Scholar
[6]
B. Q. Fu, Y. Feng, G. Yan, et al., High critical current density in Ti-doped MgB2/Ta/Cu tape by powder-in-tube process, J. Appl. Phys. 92(12) (2002) 7341-7344.
DOI: 10.1063/1.1520725
Google Scholar
[7]
C. B. Eom, M. K. Lee, J. H. Choi, et al., High critical current density and enhanced irreversibility field in superconducting MgB2 thin film, Nature. 411 (2001) 558-560.
DOI: 10.1002/chin.200140015
Google Scholar
[8]
M. Xu, H. Kitazawa, Y. Takano, et al., Anisotropy of superconductivity from MgB2 single crystals, Appl. Phys. Letts. 79 (2001) 2779-2781.
DOI: 10.1063/1.1413729
Google Scholar
[9]
Y. Y. Wu, B. Messer, P. D. Yang, Superconducting MgB2 Nanowires, Adv. Mater. 13(19) (2001) 1487-1451.
DOI: 10.1002/1521-4095(200110)13:19<1487::aid-adma1487>3.0.co;2-q
Google Scholar
[10]
J. S. Slusky, H. Ragado, M. A. Hayward, et al., Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-xA1xB2, Nature 410 (2001) 343-345.
DOI: 10.1038/35066528
Google Scholar
[11]
Y. Zhao, Y. Feng, C. H. Cheng, et al., High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure. Appl. Phys. Letts. 79(8) (2001) 1154-1156.
DOI: 10.1063/1.1396629
Google Scholar
[12]
Y. Feng, Y. Zhao, Y. P. Sun, et al., Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure, Appl. Phys. Letts. 79(24) (2001) 3983-3985.
DOI: 10.1063/1.1426264
Google Scholar
[13]
Y. W. Ma, X. P. Zhang, G. Nishijima, et al., Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route, Appl. Phys. Letts. 88(7) (2006) 072502.
DOI: 10.1063/1.2173635
Google Scholar
[14]
S. X. Dou, W. K. Yeoh, O. Shcherbakova, et al., Alignment of carbon nanotube additives for improved performance of magnesium diboride superconductors, Adv. Mater. 18(6) (2006) 785-788.
DOI: 10.1002/adma.200501617
Google Scholar
[15]
C. Y. Zhang, Y. B. Wang, W. W. Hu, Q. R. Feng, The effect of Si addition in MgB2 thin films by hybrid physical–chemical vapor deposition using silane as the doping source, Supercond. Sci. Technol. 23 (2010) 065017.
DOI: 10.1088/0953-2048/23/6/065017
Google Scholar
[16]
Z. S. Gao, Y. W. Ma, X. P. Zhang, et al., Strongly enhanced critical current density in MgB2/Fe tapes by stearic acid and stearate doping, Supercond. Sci. Technol. 20(5) (2007) 485-489.
DOI: 10.1088/0953-2048/20/5/013
Google Scholar
[17]
X. L. Wang, Z. X. Cheng, S. X. Dou, Silicon oil: A cheap liquid additive for enhancing in-field critical current density in MgB2, Appl. Phys. Letts. 90(4) (2007) 42-48.
DOI: 10.1063/1.2435321
Google Scholar
[18]
X. P. Zhang, Y. W. Ma, D. L. Wang, et al., Phthalocyanine doping to improve critical current densities in MgB2 tapes, Supercond. Sci. Technol. 22(4) (2009) 045019.
DOI: 10.1088/0953-2048/22/4/045019
Google Scholar
[19]
X. P. Zhang, D. L. Wang, Z. S. Gao, et al., Doping with a special carbohydrate, C9H11NO, to improve the J(c)-B properties of MgB2 tapes, Supercond. Sci. Technol. 23(2) (2010) 025024.
Google Scholar
[20]
X. F. Rui, Y. Zhao, Y. Y. Xu, et al., Improved flux pinning behaviour in bulk MgB2 achieved by nano-SiO2 addition, Supercond. Sci. Technol. 17(4) (2004) 689-691.
DOI: 10.1088/0953-2048/17/4/022
Google Scholar
[21]
B. Qu, X. D. Sun, J. G. Li, et al., Significant improvement of critical current density in MgB2 doped with ferromagnetic Fe3O4 nanoparticles, Supercond. Sci. Technol. 22(1) (2009) 015027.
DOI: 10.1088/0953-2048/22/1/015027
Google Scholar
[22]
Y. W. Ma, H. Kumakura, A. Matsumoto, et al., Microstructure and high critical current density of in situ processed MgB2 tapes made by WSi2 and ZrSi2 doping, Appl. Phys. Letts. 83(6) (2003) 1181-1183.
DOI: 10.1063/1.1600508
Google Scholar
[23]
S. X. Dou, A. V. Pan, S. Zhou, et al., Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping. J. Appl. Phys, 2003. 94(3): 1850-1856.
DOI: 10.1063/1.1586467
Google Scholar
[24]
S. X. Dou, A. V. Pan, S. Zhou, et al., Substitution-induced pinning in MgB2 superconductor doped with SiC nano-particles, Supercond. Sci. Technol. 15(11) (2002) 1587-1591.
DOI: 10.1088/0953-2048/15/11/317
Google Scholar
[25]
S. X. Dou, V. Braccini, S. Soltanian, et al., Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2, J. Appl. Phys.. 96(12) (2004) 7549-7555.
DOI: 10.1063/1.1814415
Google Scholar
[26]
S. X. Dou, O. Shcherbakova, W. K. Yeoh, et al., Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping, Phys. Rev. Letts. 98 (2007) 097002.
Google Scholar
[27]
Z. Q. Ma, Y. C. Liu, W. P. Hu, et al., The enhancement of Jc in nano SiC-doped MgB2 superconductors rapidly synthesized by activated sintering at low-temperature, Scripta Materialia. 61 (2009) 836-839.
DOI: 10.1016/j.scriptamat.2009.07.009
Google Scholar
[28]
Z. Q. Ma, Y. C. Liu, Q. Zhao, et al., Mechanism analysis for the enhanced electromagnetic properties in nano-SiC-doped MgB2 based on the discussion of the sintering process, Supercond. Sci. Technol. 22 (2009) 085015.
DOI: 10.1088/0953-2048/22/8/085015
Google Scholar
[29]
A. J. Berteaud, J. C. Badot, High temperature microwave heating in refractory materials, J. Microwave Power. 11(4) (1976) 315-322.
DOI: 10.1080/00222739.1976.11689007
Google Scholar
[30]
W. H. Sutton, Microwave processing of ceramic materials, Ceram. Bull. 68(2) (1989) 376-376.
Google Scholar
[31]
H. Wang, J. Z. Xu, J. J. Zhu, et al., Preparation of CuO nano-particles by microwave irradiation, J. Cryst Growth. 244 (2002) 88-92.
Google Scholar
[32]
R. Roy, D. Agrawal, J. Cheng, et al., Full sintering of powder-metal bodies in a microwave field, Nature 399 (17) (1999) 668-669.
DOI: 10.1038/21390
Google Scholar
[33]
S. Gedevanishvili, D. Agrawal, R. Roy, Microwave combustion synthesis and sintering of intermetallics and Alloys, J. Mater. Sci. Letts. 18 (1999) 665-667.
Google Scholar
[34]
C. C. Landry, J. Lockwood, A. R. Barron, Synthesis of chalcopyrite semiconductors and their solid solutions by microwave irradiation, Chem. Mater. 7 (1995) 699-703.
DOI: 10.1021/cm00052a015
Google Scholar
[35]
D. R. Baghurst, A. M. Chippindale, D. M. P. Mingos, Microwave syntheses for superconducting ceramics, Nature 332 (1988) 311-311.
DOI: 10.1038/332311a0
Google Scholar
[36]
D. Grossin, C. Harnois, S. Marinel, et al., YBCO bulk superconductor prepared by top-seed floating zone under microwave heating, J. Euro. Ceram. Soc. 25 (2005) 2939-2945.
DOI: 10.1016/j.jeurceramsoc.2005.03.217
Google Scholar
[37]
A. Agostino, E. Bonometti, P. Volpe, et al., Carbon influence in the systhesis of MgB2 by a microwave method, Int. J. Mod. Phys. B. 17(4-6) (2003) 773-778.
Google Scholar
[38]
Y. Köseoglu, B. Aktaş, F. Yildiz, et al., ESR studies on high-Tc superconductor MgB2, Physica C. 390(3) (2003) 197-203.
DOI: 10.1016/s0921-4534(03)00896-7
Google Scholar
[39]
C. Dong, J. Guo, G. C. Fu, et al., Rapid preparation of MgB2 superconductor using hybrid microwave synthesis, Supercond. Sci. Technol. 17(12) (2004) L55-L57.
DOI: 10.1088/0953-2048/17/12/l01
Google Scholar
[40]
Q. L. Xia, J. H. Yi, Y. D. Peng, et al., Microwave direct synthesis of MgB2 superconductor, Mater. Letts. 62, (2008) 4006-4008.
DOI: 10.1016/j.matlet.2008.05.043
Google Scholar
[41]
C. Q. Jin, Y. L. Zhang, Z. X. Liu, et al., Thermodynamic properties of MgCNi3 superconductor. Physica C. 388-389 (2003) 561-562.
DOI: 10.1016/s0921-4534(02)02740-5
Google Scholar
[42]
C. P. Bean, Magnetization of high-field superconductors, Rev. Mod. Phys. 36 (1964) 31-36.
Google Scholar
[43]
C. Cheng, Y. Zhao, Enhancement of critical current density of MgB2 by doping Ho2O3, Appl. Phys. Letts. 89 (2006) 252501.
DOI: 10.1063/1.2409368
Google Scholar