Microwave Synthesis of Nano SiC Doping Mg(B1-2x(SiC)x)2 Superconductor and Superconductivity

Article Preview

Abstract:

Superconductor samples Mg(B1-2x(SiC)x)2 (x=0, 5%, 10%) are synthesized from nano SiC, Mg and amorphous boron powders by microwave direct synthesis in a short time. Powder X-ray diffraction (XRD) analysis indicates that the phases of the synthesis sample are MgB2 (major phase) and a small amount of MgO and Mg2Si. The main peaks of MgB2, (100), (101), (002) and (110) are shift to the higher diffraction angle position and the width of half height of the diffraction plane is broaden for the SiC doping Mg(B1-2x(SiC)x)2, which show that the B positions of MgB2 are partly substituted and the grains of MgB2 are fine. Scanning electron microscope (SEM) observation shows that the MgB2 grain size is very small and the sample is tightness (compact). The onset superconducting transition temperature of the Mg(B1-2x(SiC)x)2 (x=0, 5%, 10%) samples measured by magnetization measurement are about 37.6 K, 37.0 K, 36.8 K respectively. The critical current density Jc are calculated according to the Bean model from the magnetization hysteresis loop of the slab Mg(B1-2x(SiC)x)2 (x=0, 5%, 10%) samples. The critical current density Jc of nano SiC doping Mg(B1-2x(SiC)x)2 samples are greatly enhanced. In higher external magnetic field, the Jc of 10% SiC doped sample is the highest; in lower external magnetic field, the Jc of 5% SiC doped sample is the highest; while in the whole external magnetic field, the Jc of undoped sample is the lowest.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

11-16

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Superconductivity at 39 K in magnesium diboride, Nature 410 (2001) 63-64.

DOI: 10.1038/35065039

Google Scholar

[2] C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2, Supercond. Sci. Technol. 14 (2001) R115-R146.

DOI: 10.1088/0953-2048/14/11/201

Google Scholar

[3] C. Q. Jin, S. C. Li, R. C. Yu, et al., Property studies of MgB2 superconductor directly synthesized using high pressure, J. Phys.: Condens. Matter. 14 (2002) 10771-10778.

DOI: 10.1088/0953-8984/14/44/375

Google Scholar

[4] Y. D. Gao, J. Ding, G. V. S. Rao, et al., Magnetic properties and superconductivity of mechanically alloyed (Mg1-xFex)B2 samples with x=0.0-0.4, J. Appl. Phys. 93(10) (2003) 8656-8658.

DOI: 10.1063/1.1556286

Google Scholar

[5] S. Jin, H. Mavoori, R. B. van Dover, High critical currents in iron-clad superconducting MgB2 wires, Nature 411 (2001) 563-565.

DOI: 10.1038/35079030

Google Scholar

[6] B. Q. Fu, Y. Feng, G. Yan, et al., High critical current density in Ti-doped MgB2/Ta/Cu tape by powder-in-tube process, J. Appl. Phys. 92(12) (2002) 7341-7344.

DOI: 10.1063/1.1520725

Google Scholar

[7] C. B. Eom, M. K. Lee, J. H. Choi, et al., High critical current density and enhanced irreversibility field in superconducting MgB2 thin film, Nature. 411 (2001) 558-560.

DOI: 10.1002/chin.200140015

Google Scholar

[8] M. Xu, H. Kitazawa, Y. Takano, et al., Anisotropy of superconductivity from MgB2 single crystals, Appl. Phys. Letts. 79 (2001) 2779-2781.

DOI: 10.1063/1.1413729

Google Scholar

[9] Y. Y. Wu, B. Messer, P. D. Yang, Superconducting MgB2 Nanowires, Adv. Mater. 13(19) (2001) 1487-1451.

DOI: 10.1002/1521-4095(200110)13:19<1487::aid-adma1487>3.0.co;2-q

Google Scholar

[10] J. S. Slusky, H. Ragado, M. A. Hayward, et al., Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-xA1xB2, Nature 410 (2001) 343-345.

DOI: 10.1038/35066528

Google Scholar

[11] Y. Zhao, Y. Feng, C. H. Cheng, et al., High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure. Appl. Phys. Letts. 79(8) (2001) 1154-1156.

DOI: 10.1063/1.1396629

Google Scholar

[12] Y. Feng, Y. Zhao, Y. P. Sun, et al., Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure, Appl. Phys. Letts. 79(24) (2001) 3983-3985.

DOI: 10.1063/1.1426264

Google Scholar

[13] Y. W. Ma, X. P. Zhang, G. Nishijima, et al., Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route, Appl. Phys. Letts. 88(7) (2006) 072502.

DOI: 10.1063/1.2173635

Google Scholar

[14] S. X. Dou, W. K. Yeoh, O. Shcherbakova, et al., Alignment of carbon nanotube additives for improved performance of magnesium diboride superconductors, Adv. Mater. 18(6) (2006) 785-788.

DOI: 10.1002/adma.200501617

Google Scholar

[15] C. Y. Zhang, Y. B. Wang, W. W. Hu, Q. R. Feng, The effect of Si addition in MgB2 thin films by hybrid physical–chemical vapor deposition using silane as the doping source, Supercond. Sci. Technol. 23 (2010) 065017.

DOI: 10.1088/0953-2048/23/6/065017

Google Scholar

[16] Z. S. Gao, Y. W. Ma, X. P. Zhang, et al., Strongly enhanced critical current density in MgB2/Fe tapes by stearic acid and stearate doping, Supercond. Sci. Technol. 20(5) (2007) 485-489.

DOI: 10.1088/0953-2048/20/5/013

Google Scholar

[17] X. L. Wang, Z. X. Cheng, S. X. Dou, Silicon oil: A cheap liquid additive for enhancing in-field critical current density in MgB2, Appl. Phys. Letts. 90(4) (2007) 42-48.

DOI: 10.1063/1.2435321

Google Scholar

[18] X. P. Zhang, Y. W. Ma, D. L. Wang, et al., Phthalocyanine doping to improve critical current densities in MgB2 tapes, Supercond. Sci. Technol. 22(4) (2009) 045019.

DOI: 10.1088/0953-2048/22/4/045019

Google Scholar

[19] X. P. Zhang, D. L. Wang, Z. S. Gao, et al., Doping with a special carbohydrate, C9H11NO, to improve the J(c)-B properties of MgB2 tapes, Supercond. Sci. Technol. 23(2) (2010) 025024.

Google Scholar

[20] X. F. Rui, Y. Zhao, Y. Y. Xu, et al., Improved flux pinning behaviour in bulk MgB2 achieved by nano-SiO2 addition, Supercond. Sci. Technol. 17(4) (2004) 689-691.

DOI: 10.1088/0953-2048/17/4/022

Google Scholar

[21] B. Qu, X. D. Sun, J. G. Li, et al., Significant improvement of critical current density in MgB2 doped with ferromagnetic Fe3O4 nanoparticles, Supercond. Sci. Technol. 22(1) (2009) 015027.

DOI: 10.1088/0953-2048/22/1/015027

Google Scholar

[22] Y. W. Ma, H. Kumakura, A. Matsumoto, et al., Microstructure and high critical current density of in situ processed MgB2 tapes made by WSi2 and ZrSi2 doping, Appl. Phys. Letts. 83(6) (2003) 1181-1183.

DOI: 10.1063/1.1600508

Google Scholar

[23] S. X. Dou, A. V. Pan, S. Zhou, et al., Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping. J. Appl. Phys, 2003. 94(3): 1850-1856.

DOI: 10.1063/1.1586467

Google Scholar

[24] S. X. Dou, A. V. Pan, S. Zhou, et al., Substitution-induced pinning in MgB2 superconductor doped with SiC nano-particles, Supercond. Sci. Technol. 15(11) (2002) 1587-1591.

DOI: 10.1088/0953-2048/15/11/317

Google Scholar

[25] S. X. Dou, V. Braccini, S. Soltanian, et al., Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2, J. Appl. Phys.. 96(12) (2004) 7549-7555.

DOI: 10.1063/1.1814415

Google Scholar

[26] S. X. Dou, O. Shcherbakova, W. K. Yeoh, et al., Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping, Phys. Rev. Letts. 98 (2007) 097002.

Google Scholar

[27] Z. Q. Ma, Y. C. Liu, W. P. Hu, et al., The enhancement of Jc in nano SiC-doped MgB2 superconductors rapidly synthesized by activated sintering at low-temperature, Scripta Materialia. 61 (2009) 836-839.

DOI: 10.1016/j.scriptamat.2009.07.009

Google Scholar

[28] Z. Q. Ma, Y. C. Liu, Q. Zhao, et al., Mechanism analysis for the enhanced electromagnetic properties in nano-SiC-doped MgB2 based on the discussion of the sintering process, Supercond. Sci. Technol. 22 (2009) 085015.

DOI: 10.1088/0953-2048/22/8/085015

Google Scholar

[29] A. J. Berteaud, J. C. Badot, High temperature microwave heating in refractory materials, J. Microwave Power. 11(4) (1976) 315-322.

DOI: 10.1080/00222739.1976.11689007

Google Scholar

[30] W. H. Sutton, Microwave processing of ceramic materials, Ceram. Bull. 68(2) (1989) 376-376.

Google Scholar

[31] H. Wang, J. Z. Xu, J. J. Zhu, et al., Preparation of CuO nano-particles by microwave irradiation, J. Cryst Growth. 244 (2002) 88-92.

Google Scholar

[32] R. Roy, D. Agrawal, J. Cheng, et al., Full sintering of powder-metal bodies in a microwave field, Nature 399 (17) (1999) 668-669.

DOI: 10.1038/21390

Google Scholar

[33] S. Gedevanishvili, D. Agrawal, R. Roy, Microwave combustion synthesis and sintering of intermetallics and Alloys, J. Mater. Sci. Letts. 18 (1999) 665-667.

Google Scholar

[34] C. C. Landry, J. Lockwood, A. R. Barron, Synthesis of chalcopyrite semiconductors and their solid solutions by microwave irradiation, Chem. Mater. 7 (1995) 699-703.

DOI: 10.1021/cm00052a015

Google Scholar

[35] D. R. Baghurst, A. M. Chippindale, D. M. P. Mingos, Microwave syntheses for superconducting ceramics, Nature 332 (1988) 311-311.

DOI: 10.1038/332311a0

Google Scholar

[36] D. Grossin, C. Harnois, S. Marinel, et al., YBCO bulk superconductor prepared by top-seed floating zone under microwave heating, J. Euro. Ceram. Soc. 25 (2005) 2939-2945.

DOI: 10.1016/j.jeurceramsoc.2005.03.217

Google Scholar

[37] A. Agostino, E. Bonometti, P. Volpe, et al., Carbon influence in the systhesis of MgB2 by a microwave method, Int. J. Mod. Phys. B. 17(4-6) (2003) 773-778.

Google Scholar

[38] Y. Köseoglu, B. Aktaş, F. Yildiz, et al., ESR studies on high-Tc superconductor MgB2, Physica C. 390(3) (2003) 197-203.

DOI: 10.1016/s0921-4534(03)00896-7

Google Scholar

[39] C. Dong, J. Guo, G. C. Fu, et al., Rapid preparation of MgB2 superconductor using hybrid microwave synthesis, Supercond. Sci. Technol. 17(12) (2004) L55-L57.

DOI: 10.1088/0953-2048/17/12/l01

Google Scholar

[40] Q. L. Xia, J. H. Yi, Y. D. Peng, et al., Microwave direct synthesis of MgB2 superconductor, Mater. Letts. 62, (2008) 4006-4008.

DOI: 10.1016/j.matlet.2008.05.043

Google Scholar

[41] C. Q. Jin, Y. L. Zhang, Z. X. Liu, et al., Thermodynamic properties of MgCNi3 superconductor. Physica C. 388-389 (2003) 561-562.

DOI: 10.1016/s0921-4534(02)02740-5

Google Scholar

[42] C. P. Bean, Magnetization of high-field superconductors, Rev. Mod. Phys. 36 (1964) 31-36.

Google Scholar

[43] C. Cheng, Y. Zhao, Enhancement of critical current density of MgB2 by doping Ho2O3, Appl. Phys. Letts. 89 (2006) 252501.

DOI: 10.1063/1.2409368

Google Scholar