Photoluminescence Enhancement of CdS Nanocrystals Fabricated on Dithiocarbamate Functionalized PET Substrates

Article Preview

Abstract:

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1511-1515

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Lim, C.K. Kang, K.K. Kim, et al., Uv electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering, Adv. Mater. 18 (2006) 2720-2724.

DOI: 10.1002/adma.200502633

Google Scholar

[2] V.I. Klimov, A.A. Mikhailovsky, S. Xu, et al., Optical gain and stimulated emission in nanocrystal quantum dots, Science 290 (2000) 314-317.

DOI: 10.1126/science.290.5490.314

Google Scholar

[3] X.F. Duan, C.M. Niu, V. Sahi, et al., High-performance thin-film transistors using semiconductor nanowires and nanoribbons, Nature 425 (2003) 274-278.

DOI: 10.1038/nature01996

Google Scholar

[4] W.U. Huynh, X. Peng, A.P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices, Adv. Mater. 11 (1999) 923-927.

DOI: 10.1002/(sici)1521-4095(199908)11:11<923::aid-adma923>3.0.co;2-t

Google Scholar

[5] D. Pan, S. Jiang, L. An, B. Jiang, Controllable synthesis of highly luminescent and monodisperse cds nanocrystals by a two-phase approach under mild conditions, Adv. Mater. 16 (2004) 982-985.

DOI: 10.1002/adma.200400010

Google Scholar

[6] A. Chemseddine, H. Weller, Highly monodisperse quantum sized cds particles by size-selective precipitation, Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 97 (1993) 636-637.

DOI: 10.1002/bbpc.19930970417

Google Scholar

[7] R.B. Khomane, A. Manna, A.B. Mandale, B.D. Kulkarni, Synthesis and characterization of dodecanethiol-capped cadmium sulfide nanoparticles in a winsor ii microemulsion of diethyl ether/aot/water, Langmuir 18 (2002) 8237-8240.

DOI: 10.1021/la011567b

Google Scholar

[8] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706-8715.

DOI: 10.1021/ja00072a025

Google Scholar

[9] Y. Xie, J. Huang, B. Li, Y. Liu, Y. Qian, A novel peanut-like nanostructure of ii–vi semiconductor cds and zns, Adv. Mater. 12 (2000) 1523-1526.

DOI: 10.1002/1521-4095(200010)12:20<1523::aid-adma1523>3.0.co;2-t

Google Scholar

[10] Y. Shi, C. Tu, R. Wang, et al., Preparation of cds nanocrystals within supramolecular self-assembled nanoreactors and their phase transfer behavior, Langmuir 24 (2008) 11955-11958.

DOI: 10.1021/la801952v

Google Scholar

[11] Y. Zhao, W. Pérez-Segarra, Q. Shi, A. Wei, Dithiocarbamate assembly on gold, J. Am. Chem. Soc. 127 (2005) 7328-7329.

DOI: 10.1021/ja050432f

Google Scholar

[12] A.-S. Duwez, P. Guillet, C. Colard, J.-F. Gohy, C.-A. Fustin, Dithioesters and trithiocarbonates as anchoring groups for the "grafting-to" approach, Macromolecules 39 (2006) 2729-2731.

DOI: 10.1021/ma0602829

Google Scholar

[13] F. Dubois, B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, A versatile strategy for quantum dot ligand exchange, J. Am. Chem. Soc. 129 (2006) 482-483.

DOI: 10.1021/ja067742y

Google Scholar

[14] P. Morf, F. Raimondi, H.-G. Nothofer, et al., Dithiocarbamates: functional and versatile linkers for the formation of self-assembled monolayers, Langmuir 22 (2005) 658-663.

DOI: 10.1021/la052952u

Google Scholar

[15] M.S. Vickers, J. Cookson, P.D. Beer, P.T. Bishop, B. Thiebaut, Dithiocarbamate ligand stabilised gold nanoparticles, J. Mater. Chem. 16 (2006) 209-215.

DOI: 10.1039/b509173j

Google Scholar

[16] R.D. Weinstein, J. Richards, S.D. Thai, et al., Characterization of self-assembled monolayers from lithium dialkyldithiocarbamate salts, Langmuir 23 (2007) 2887-2891.

DOI: 10.1021/la062905h

Google Scholar

[17] H. Tetsuka, T. Ebina, F. Mizukami, Highly luminescent flexible quantum dot–clay films, Adv. Mater. 20 (2008) 3039-3043.

DOI: 10.1002/adma.200702544

Google Scholar

[18] M.-H. Park, Y. Ofir, B. Samanta, P. Arumugam, O.R. Miranda, V.M. Rotello, Nanoparticle immobilization on surfaces via activatable heterobifunctional dithiocarbamate bond formation, Adv. Mater. 20 (2008) 4185-4188.

DOI: 10.1002/adma.200801155

Google Scholar

[19] M.H. Park, Y. Ofir, B. Samanta, V.M. Rotello, Robust and responsive dendrimer-gold nanoparticle nanocomposites via dithiocarbamate crosslinking, Adv. Mater. 21 (2009) 2323-2327.

DOI: 10.1002/adma.200803368

Google Scholar

[20] T. Tsuruoka, R. Takahashi, T. Nakamura, M. Fujii, K. Akamatsu, H. Nawafune, Highly luminescent mono- and multilayers of immobilized cdte nanocrystals: Controlling optical properties through post chemical surface modification, Chem. Commun. (2008) 1641-1643.

DOI: 10.1039/b717732a

Google Scholar

[21] L. Hou, C. Wang, L. Chen, S. Chen, Multiple-structured nanocrystals towards bifunctional photoluminescent-superhydrophobic surfaces, J. Mater. Chem. 20 (2010) 3863-3868.

DOI: 10.1039/b926761a

Google Scholar