The Thermoelectric Performance Enhancement of N-Type BiTeSe Alloys by Addition of ZnAlO

Article Preview

Abstract:

A series of n-type BiTeSe/ZnAlO composites were prepared by zone melting method. Thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient α and thermal conductivity κ, were measured in the temperature range of 300-550K. Results show that the electrical properties have been slightly lowered due to the reduced carrier concentration by ZnAlO addition. However, the low-temperature-shifted peak α, resulting from the prematurely happened intrinsic excitation, have shifted peak ZT to lower temperatures. As a result, the ZT values at 300 K were significantly enhanced for BiTeSe/ZnAlO composites compared to that of BiTeSe, making more attractive for cooling applications at ambient temperature.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1647-1650

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials 7 (2008) 105.

Google Scholar

[2] B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen and Z. F. Ren, High-thermoelectric performance of nanostructured Bismuth Antimony Telluride bulk alloys, Science 320 (2008) 634.

DOI: 10.1126/science.1156446

Google Scholar

[3] W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, and T. M. Tritt, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Appl. Phys. Lett. 94 (2009) 102111.

DOI: 10.1063/1.3097026

Google Scholar

[4] A. F. Ioffe: Semiconductor thermoelements and thermoelectric cooling, Infosearch, London, 1957.

Google Scholar

[5] L. D. Zhao, B. P. Zhang, J. F. Li, M. Zhou, W. S. Liu and J. Liu, Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloy and spark plasma sintering, J. Alloys. Compd. 455 (2008) 259.

DOI: 10.1016/j.jallcom.2007.01.015

Google Scholar

[6] Z. Xiong, X. H. Chen, X. Y. Zhao, S. Q. Bai, X. Y. Huang and L. D. Chen, Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0.22Co4Sb12, Solid State Sciences 11 (2009) 1612.

DOI: 10.1016/j.solidstatesciences.2009.06.007

Google Scholar

[7] R. G. Yang, G. Chen, Nanostructured thermoelectric materials: from superlattices to nanocomposites, Mater Integr 18 (2005) 33.

Google Scholar

[8] Z. M. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S. H. Li, M. Toprak and M. Muhammed, Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit, Nanotechnology 18 (2007) 235602.

DOI: 10.1088/0957-4484/18/23/235602

Google Scholar

[9] T. Zhang, Q. S. Zhang, J. Jiang, Z. Xiong, J. M. Chen, Y. L. Zhang, W. Li and G. J. Xu, Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO, Appl. Phys. Lett. 98 (2011) 022104.

DOI: 10.1063/1.3541654

Google Scholar

[10] H. Cheng, X. J. Xu, H. H. Hng, J. Ma, Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering, Ceram. Int. 35 (2009) 3071.

DOI: 10.1016/j.ceramint.2009.04.010

Google Scholar

[11] A. Shui, S. M. Wang, H. Wang and X. S. Cheng, Preparation and properties for aluminum-doped zinc oxide powders with the coprecipitation method, J. Ceram. Soc. Japan 117 (2009) 703.

DOI: 10.2109/jcersj2.117.703

Google Scholar

[12] X. B. Zhao, X. H. Ji, Y. H. Zhang, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites, Appl. Phys. Lett. 86 (2005) 062111.

DOI: 10.1063/1.1863440

Google Scholar