Facile Synthesis of Hierarchically Macro/Mesoporous Carbons by Polymerization-Induced Phase Separation Combined with Starch Template

Article Preview

Abstract:

In this work, a facile approach combining polymerization-induced phase separation and starch-templating is presented to synthesize hierarchically macro/mesoporous carbons. The obtained porous carbons have bimodal macropores with pore diameters of 10~60 μm and 3~5 μm and 3D interconnected mesopores with pore diameters of 5~40 nm. The large macropores and the small macropores are obtained by the thermal decomposition and the closely stacking of starch particles, respectively. The 3D interconnected mesopores are developed through polymerization-induced phase separation between ethylene glycol and phenolic resin via spinodal decomposition mechanism. These as-prepared hierarchically macro/mesoporous carbons may have great potential for applications as electrodes materials for batteries, fuel cells, and supercapacitors due to their facile synthesis, unique hierarchical porous structure, and large BET surface areas (~ 610 m2/g).

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1641-1646

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Inagaki, Pores in carbon materials-importance of their control, New Carbon Mater. 24 (2009) 193-232.

DOI: 10.1016/s1872-5805(08)60048-7

Google Scholar

[2] R.Q. Sun, L.B. Sun, Y. Chun, Q.H. Xu, Catalytic performance of porous carbons obtained by chemical activation, Carbon 46 (2008) 1757-1764.

DOI: 10.1016/j.carbon.2008.07.029

Google Scholar

[3] C. Zheng, L. Qi, M. Yoshio, Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors, J. Power Sources (2010) 4406-4409.

DOI: 10.1016/j.jpowsour.2010.01.041

Google Scholar

[4] P. Kim, J.B. Joo, W. Kim, et al., A novel method for the fabrication of ordered and three dimensionally interconnected macroporous carbon with mesoporosity, Carbon 44 (2006) 389-392.

DOI: 10.1016/j.carbon.2005.08.029

Google Scholar

[5] Y. Zhao, M.B. Zheng, J.M. Cao, et al., Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors, Mater. Lett. 62 (2008) 548-551.

DOI: 10.1016/j.matlet.2007.06.002

Google Scholar

[6] W. Xing, S.P. Zhuo, X.L. Gao, Preparation of hierarchical porous carbon by post activation, Mater. Lett. 63 (2009) 1311-1313.

DOI: 10.1016/j.matlet.2009.03.008

Google Scholar

[7] G.S. Chai, I.S. Shin, J.S. Yu, Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells, Adv. Mater. 16 (2004) 2057-2061.

DOI: 10.1002/adma.200400283

Google Scholar

[8] S.W. Woo, K. Dokko, H. Nakano, et al., Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors, J. Mater. Chem. 18 (2008) 1674-1680.

DOI: 10.1039/b717996k

Google Scholar

[9] H. Xu, Q.M. Gao, H.L. Guo, H.L. Wang, Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor, Micropor. Mesopor. Mater. 133 (2010) 106-114.

DOI: 10.1016/j.micromeso.2010.04.021

Google Scholar

[10] B.Z. Fang, J.H. Kim, M. Kim, et al., Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell, Chem. Mater. 21 (2009) 789-796.

DOI: 10.1021/cm801467y

Google Scholar

[11] Z.Y. Wang, F. Li, N.S. Ergang, A. Stein, Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites, Chem. Mater. 18 (2006) 5543-5553.

DOI: 10.1021/cm062050u

Google Scholar

[12] Y.H. Deng, C. Liu, T. Yu, et al., Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach, Chem. Mater. 19 (2007) 3271-3277.

DOI: 10.1021/cm070600y.s001

Google Scholar

[13] C. Zou, D.C. Wu, M.Z. Li, et al., Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains, J. Mater. Chem. 20 (2010) 731-735.

DOI: 10.1039/b917960g

Google Scholar

[14] A.F. Gross, A.P. Nowak, Hierarchical carbon foams with independently tunable mesopore and macropore size distribution, Langmuir 26 (2010) 11378-11383.

DOI: 10.1021/la1007846

Google Scholar

[15] S. Zhang, L. Chen, S. Zhou, D.Y. Zhao, L.M. Wu, Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support, Chem. Mater. 22 (2010) 3433-3440.

DOI: 10.1021/cm1002274

Google Scholar

[16] A.G. Loera, F. Cara, M. Dumon, J.P. Pascault, Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer, Macromolecules 35 (2002) 6291-6297.

DOI: 10.1021/ma011567i

Google Scholar

[17] S.J. Xu, J. Li, G.J. Qiao, H.J. Wang, T.J. Lu, Pore structure control of mesoporous carbon monoliths derived from mixtures of phenolic resin and ethylene glycol, Carbon 47 (2009) 2103-2111.

DOI: 10.1016/j.carbon.2009.03.069

Google Scholar

[18] C.A. Fyfe, M.S. McKinnon, A. Rudin, Investigation of the mechanism of the thermal decomposition of cured phenolic resins by high-resolution 13C CP/MAS solid-state NMR spectroscopy, Macromolecules 16 (1983) 1216-1219.

DOI: 10.1021/ma00241a033

Google Scholar

[19] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al., Reporing physisorption data for gas/solid systems with special preference to the determination of surface area and porosity, Pure & Appl. Chem. 57 (1985) 603-619.

DOI: 10.1351/pac198557040603

Google Scholar

[20] N. Tsujioka, N. Ishizuka, N. Tanaka, T. Kubo, K. Hosoya, Well-controlled 3D skeletal epoxy-based monoliths obtained by polymerization induced phase separation, J. Polym. Sci., Part A: Polym. Chem. 46 (1983) 3272-3281.

DOI: 10.1002/pola.22665

Google Scholar