[1]
H. Gruenspecht and D. Administrator. R.U.S. Energy Information Admanistration(2010)
Google Scholar
[2]
H. Lin, The opportunities and challenges of the low cost dye-sensitized solar cells. J. Ad. Mater. In. 199(2010) 40-44.
Google Scholar
[3]
A.Yella, H.W. Lee, H.N. Tsao, M.Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficienc. J. Sci. 334(2011) 629-633.
DOI: 10.1126/science.1209688
Google Scholar
[4]
L. C. Li, C. F.Tang , S. J.Wang, Study on the preparation and properties of long-term weatherability eva films used in a solar cell. J. Sol. Energy (2010)75-77.
Google Scholar
[5]
D.G. Lee, J.T. Hong, G.C.Xu, et al., A simpledye-sensitized solar cell sealing technique using a CO2 laser beam excited by 60Hz AC discharges. J. Optics & Laser Tech.42 (2010) 934–940.
DOI: 10.1016/j.optlastec.2010.01.011
Google Scholar
[6]
T. Kitamural, K.Okada, H. Matsui, N. Tanabe. Durability of dye-sensitized solar cells and modules. J. Journal of Sol. Energy Engineering 132(2010) 51–57.
DOI: 10.1115/1.4001152
Google Scholar
[7]
I. Lee, S.J. Hwang, H.S. Kim, Reaction between oxide sealant and liquid electrolyte in dye-sensitized solar cells. J. Sol. Energy Mater. Sol. Cells 95 (2011) 315–317.
DOI: 10.1016/j.solmat.2010.04.052
Google Scholar
[8]
Z. Tachan, S. Ruhle, A. Zaban. A new solar cell design for efficient current collection and improved cell sealing [J]. Sol. Energy Mater. Sol. Cells 94 (2010) 317–322.
DOI: 10.1016/j.solmat.2009.10.006
Google Scholar
[9]
L.Wang, X.M. Fang, Zh.G.Zhang, Design methods for large scale dye-sensitized solar modules and the progress of stability research. J. Renew.Sust. Energy Reviews. 14 (2010) 3178–3184.
DOI: 10.1016/j.rser.2010.06.019
Google Scholar
[10]
S.E. Lin, Y.R. Cheng, W.C.J. Wei. Synthesis and long-term test of borosilicate-based sealing glass for solid oxide fuel cells. J. Journal of the Eur. Cera. Soc.31 (2011) 1975–1985.
DOI: 10.1016/j.jeurceramsoc.2011.04.017
Google Scholar
[11]
H.Matsui, K.Okada, T.Kitamura, N.Tanabe. The normal stability of dye-sensitized solar cells with current collecting grid. J. Sol. Energy Mater. Sol. Cells 93 (2009) 1110–1115.
DOI: 10.1016/j.solmat.2009.01.008
Google Scholar
[12]
Sh. Noda, K. Nagano, T. Nakashima, M. K.Yoshino. Development of large size dye-sensitized solar cell modules with high temperature durability. J. Syn. Metals 159 (2009) 2355–2357.
DOI: 10.1016/j.synthmet.2009.10.002
Google Scholar
[13]
H.Pettersson, T.Gruszecki, Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. J. Sol. Energy Mater. Sol. Cells 70( 2001) 203–212.
DOI: 10.1016/s0927-0248(01)00025-3
Google Scholar
[14]
P.T. Nguyen, A.R. Andersen, E.M. Skou, T. Lund. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures. J. Sol. Energy Mater. Sol. Cells 94 (2010) 1582–1590.
DOI: 10.1016/j.solmat.2010.04.076
Google Scholar
[15]
N. Kato, K.Higuchi, H.Tanaka, J.Nakajima, T.Toyoda. Improvement in long-term stability of dye-sensitized solar cell for outdoor use. J. Sol. Energy Mater. Sol. Cells 95 (2011) 301–305.
DOI: 10.1016/j.solmat.2010.04.019
Google Scholar
[16]
R. Sastrawan, J. Beier, U. Belledin, S. Hemming, et al., W. Hoffmann. New Interdigital Design for Large Area Dye Solar Modules Using a Lead-free Glass Frit Sealing. J. Prog. Photovolt: 14 (2006) 697–709.
DOI: 10.1002/pip.700
Google Scholar
[17]
W.J. Lee, E.Ramasamya, D. Y. Lee, J. S. Song. Glass frit overcoated silver grid lines for nano- crystalline dye sensitized solar cells. J. Journal of Photochem. Photobio.A 183 (2006) 133–137.
DOI: 10.1016/j.jphotochem.2006.03.006
Google Scholar
[18]
Md. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte and M. Grätzel. A swift dye uptake procedure for dye sensitized solar cells. J. Chem. Commun. , 2003, 1456–1457.
DOI: 10.1039/b302566g
Google Scholar