Application of Three-Dimensional ZnO Inverse Photonic Crystal in Dye-Sensitized Solar Cells

Article Preview

Abstract:

Because of the features of photonic localization in photonic bandgap(PBG), the photonic crystals can be coupled to DSSC to increase the conversion efficiency. In this paper, through exploring the preparation of large inverse opal structure of ZnO, we attempt to apply the photonic crystals to the Dye-Sensitized Solar Cells (DSSC) to improve its efficiency. The colloidal crystal template is prepared by self-assembled on FTO substrates, and three-dimensional ZnO inverse opal is synthesized via an electrochemical deposition method in zinc nitrate solution. Then we study the inflations of its surface morphology and photonic bandgap on the solar cell’s photoelectric conversion efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1609-1613

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.

Google Scholar

[2] A. Mihi and H.Mı´guez, Origin of Light-Harvesting Enhancement in Colloidal Photonic Crystal Based Dye-Sensitized Solar Cells, J. Phys. Chem. 109 (2005) 15968-15976.

DOI: 10.1021/jp051828g

Google Scholar

[3] J.Y. Lee, S. Lee, J. ParkVol, Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror, Optical Society of America. 18 (2010) 522-527.

DOI: 10.1364/oe.18.00a522

Google Scholar

[4] S. John, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58 (1987) 2486-2489.

Google Scholar

[5] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics,Phys. Rev. Lett. 58 (1987) 2059-2062.

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[6] A.Mihi, C. Zhang, and Paul V. Brau, Transfer of Preformed Three-Dimensional Photonic Crystals onto Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed. 50 (2011) 5712-5715.

DOI: 10.1002/anie.201100446

Google Scholar

[7] A. Chutinan, N. P. Kherani, and S.Zukotynski, High-efficiency photonic crystal solar cell architecture, Opt. Express. 17 (2009) 8871-8878.

DOI: 10.1364/oe.17.008871

Google Scholar

[8] A. Mihi, F. J. Lopez-Alcaraz, H. Miguez, Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers. Appl. Phys. Lett. 88 (2006) 193110-190112.

DOI: 10.1063/1.2200746

Google Scholar

[9] S. Nishimura, N. Abrams, B. A. Lewis, et al., Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals, J.Am. Chem. Soc. 125 (2003) 6306-6310.

DOI: 10.1021/ja034650p

Google Scholar

[10] P. Bermel, C. Luo, L. Zeng, et al., Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals, Opt. Express. 15 (2007) 16986-17000.

DOI: 10.1364/oe.15.016986

Google Scholar

[11] P.G. O'Brien, A. Chutinan, K. Leong, et al.: Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study, Opt. Express. 18 (2010) 4478-4490.

DOI: 10.1364/oe.18.004478

Google Scholar

[12] M. Law, L. E. Greene, J. C. Johnson, et al., Nanowires Increase Electron Conduction 100-Fold in Solar Cell. Nature Materials. 4 ( 2005) 455-459.

Google Scholar

[13] Z. Zhou and X. S. Zhao, Opal and Inverse Opal Fabricated with a Flow Controlled Vertical Deposition Method, Langmuir. 21 (2005) 4717-4723.

DOI: 10.1021/la046775t

Google Scholar

[14] M.A. McLachlan, H. Rahman, B. Illy, et al., Electrochemical deposition of ordered macroporous ZnO on transparent conducting electrodes conducting electrodes,Materials Chemistry and Physics. 129 (2011) 343-348.

DOI: 10.1016/j.matchemphys.2011.04.021

Google Scholar

[15] L.M. Goldenberg, J. Wagner, J. Stumpe, et al., Ordered arrays of large latex particles organised by vertical deposition, Langmuir. 18 (2002) 3319-3323.

DOI: 10.1021/la015659c

Google Scholar