Preparation of Rare-Earth Doped Zirconia Nanoparticles via Supercritical Hydrothermal Method for Luminescence Properties

Article Preview

Abstract:

We report preparation of Tb3+ or Eu3+ doped zirconia nanoparticles by sub- and supercritical hydrothermal reaction and luminescence properties. Experiments were performed by a flow-type hydrothermal reaction system. We investigated the effect of the reaction temperature on crystal structure, particle size and photo-, electro-luminescence properties. Reaction temperature was varied in the ranges of 150 to 400 C and reaction pressure was fixed to 30MPa. Characteristics of the products were performed by XRD, TEM, SEM-EDS and PL, EL measurements. The product transformed from amorphous zirconium hydroxide to tetragonal ZrO2 with an increase in the reaction temperature, regardless of the doped ion species. The ZrO2:Eu particles obtained at 400C were spherical with around 5 nm in diameter. ZrO2:Eu nanoparticles obtained under supercritical water condision showed typical photoluminescence spectra of f-f transition of Eu3+; however ZrO2:Tb nanoparticle obtained under the same condition showed no photoluminescence. Furthermore, the ZrO2:Eu nanoparticles obtained at 400 C showed high electroluminescence properties at electric field of 350V and 1kHz.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

59-64

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.W. Siegel: Creating Nanophase Materials. Sci. Am. 275 (1996) 74

Google Scholar

[2] C. M. Lee, Y.H. Pai, T. P. Tang, C.C. Kao, G.R. Lin, F. S. Shieu: Mater. Chem. Phys. 119 (2010) 15

Google Scholar

[3] L.A. Diaz-Torres, E. De la Rosa, P. Salas, V.H. Romero, C. Angeles-Chavez: Solid State Chem. 181 (2008) 75

Google Scholar

[4] R. Reisfeld, M. Zelner, A. Patra: Alloy. Compo. 300-301 (2000) 147

Google Scholar

[5] E. De la Rosa-Cruz, L. A. Diaz-Torres, P. Salas, R. A. Rodrıguez, G. A. Kumar, M. A. Meneses, J. F. Mosino, J. M. Hernandezand, O. Barbosa-Garcıa: J. Appl. Phys. 94 (2003) 3509

Google Scholar

[6] H. Zhang, X. Fu, S. Niu, Q. Xin: J. non-crystallin solids 354 (2008) 1559

Google Scholar

[7] F. Ramos-Brito, M. Garcıa-Hipolito, R. Martınez-Martınez, E. Martınez-Sanchez, C. Falcony: J. Phys. D: Appl. Phys. 37 (2004) L13

Google Scholar

[8] Z.W. Quan L.S. Wang, J. Lin: Mater. Res. Bull. 40 (2005) 810

Google Scholar

[9] B. Marı, K.C. Singh, M.Saha, S.PKhatkar, V.B. Taxak, M.Kumar: J. Luminescence 130 (2010) 2128

Google Scholar

[10] L. Chen Y. Liu, Y. Li, J. Alloys Comp. 381 (2004) 266

Google Scholar

[11] T. Adschiri, Y. Hakuta. K. Arai: Ind. Eng. Chem. Res. 39 (2000) 4901

Google Scholar

[12] T. Adschiri, Y. Hakuta, K. Kanamura, K. Arai: High Press. Res. 20 (2001) 373

Google Scholar

[13] Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino and K. Arai: J. Am. Ceram. Soc. 81 (1998) 2461

Google Scholar

[14] Y. Hakuta, H. Ura, H. Hayashi, K. Arai: Ind. Eng. Chem. Res. 44 (2005) 840

Google Scholar

[15] Y. Hakuta, K. Seino, H. Ura, T. Adschiri, H. Takizawa, K. Arai: J. Mater. Chem. 9 (1999) 2671

Google Scholar

[16] Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, K. Arai: Mater. Res. Bull. 38 (2003) 1257

Google Scholar

[17] Y. Hakuta. T. Ohashi, H. Hayashi, K. Arai, J. Mater. Res. 19 (2004) 2230

Google Scholar

[18] A. Cavanas, J.A. Darr, E. Lester, M. Poliakoff: Chem. Comm. (2000) 901

Google Scholar

[19] A. Cavanas, J.A. Darr, E. Lester, M. Poliakoff: J. Mater. Chem. 11 (2001) 561

Google Scholar

[20] Y. Hakuta. T. Ohashi, H. Hayashi, K. Arai: Proc. Materials Chemistry Forum MC7: Functional Materials for the 21st Century, UK (2005) p.129.

Google Scholar