Preparation and Properties of ZrB2-Cu Composites by Spark Plasma Sintering

Article Preview

Abstract:

For high thermal conductivity and high electrical conductivity, copper is a good electrode material. The wearing resistance and spark resistance of Cu can be improved with the addition of ZrB2. ZrB2-Cu composites with high Cu volume fraction was successfully prepared by spark plasma sintering (SPS) process in this paper. The microstructure and properties of the sintered samples were characterized. The effect of the sintering temperature and the ZrB2 content in composites on the relative density and properties of the composites were investigated. The results show that the relative density and mechanical properties increase with the sintering temperature increasing. The optimum sintering temperature is 900 °C for 10wt.% ZrB2-Cu, 1000 °C for 20wt.% ZrB2-Cu and 1050 °C for 30wt.% ZrB2-Cu. With the ZrB2 content in composites increasing from 10wt.% to 30 wt.%, the electrical resistivity increases from 2.25×10-6 Ω.cm to 8.82×10-6 Ω.cm, the flexural strength decreases from to 539.1 MPa to 482.2 MPa and the fracture toughness decreases from to 15 MPa.m 1/2 to 9 MPa.m 1/2. The hardness (HV) of ZrB2-Cu composites is significantly enhanced by the ZrB2 particulate reinforcement, increasing from 1410 MPa for 10 wt.% ZrB2 to 2480 MPa for 30wt.% ZrB2.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

739-743

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Monteverde, A. Bellosi, S. Guicciardi, Processing and Properties Zirconium Diborides-Based Composites, J. Eur. Ceram. Soc. 22 (2002) 279-88.

DOI: 10.1016/s0955-2219(01)00284-9

Google Scholar

[2] R.Ritasaloa, M.E. Curaa, X.W. Liua, Spark plasma sintering of submicron-sized Cu-powder- Influence of processing parameters and powder oxidization on microstructure and mechanical properties. Mater. Sci. Eng. A527 (2010) 2733-2737.

DOI: 10.1016/j.msea.2010.01.008

Google Scholar

[3] A.K. Khanra, B.R. Sarkar, B. Bhattacharya, Performance of ZrB2-Cu composite as an EDM electrode J. Mater. Pro.Tech. 183 (2007) 122.

DOI: 10.1016/j.jmatprotec.2006.09.034

Google Scholar

[4] M. Pastor, Metallic Borides: Preparation of Solid Bodies, Sintering Methods and Properties of Solid Bodies, Springer, New York, 1977, pp.457-93.

DOI: 10.1007/978-3-642-66620-9_25

Google Scholar

[5] M. Nygren, Z. Shen, On the Preparation of Bio-, Nano- and Structural Ceramics and Composites by Spark Plasma Sintering, Solid State Sci. 5 (2003) 125-31.

DOI: 10.1016/s1293-2558(02)00086-9

Google Scholar

[6] S. Q. Guo,T. Nishimura, Y. Kagawa, Spark Plasma Sintering of Zirconium Diborides, J. Am. Ceram. Soc. 91 (2008) 2848-2855.

DOI: 10.1111/j.1551-2916.2008.02587.x

Google Scholar

[7] M.L. Muolo, E. Ferrera, R. Novakovic, Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr, Scripta Materialia. 48 (2003) 191-196.

DOI: 10.1016/s1359-6462(02)00361-5

Google Scholar

[8] A. Passerone, M. L. Muolo, R. Novakovic, Liquid metal/ceramic interactions in the (Cu, Ag, Au)/ ZrB2 systems, J. Eur. Ceram. Soc. 27 (2007) 3277-3285.

DOI: 10.1016/j.jeurceramsoc.2006.12.008

Google Scholar

[9] P.K. Deshpande, J.H.Li, R.Y. Lin, Infrared processed Cu composites reinforced with WC particles, Mater. Sci. Eng. A429 (2006) 58-65.

DOI: 10.1016/j.msea.2006.04.124

Google Scholar

[10] G.F. Quan, D.L. Cai, Y.J. Song, Effect of category and content of reinforcements on mechanical properties of metal matrix composites, Journal of Composite Materials. 16 (1999) 62-66.

Google Scholar

[11] M. Rahman, C.C. Wang, W. Chen, Electrical resistivity of titanium diboride and zirconium diboride, J. Am. Ceram. Soc. 78 (1995) 1380-1382.

DOI: 10.1111/j.1151-2916.1995.tb08498.x

Google Scholar

[12] T. Osaka, N. Yamachika, M. Yoshino, Effect of Carbon Content on the Electrical Resistivity of Electrodeposited Copper, Electrochemical and Solid-State Letters. 12 (2009) D15-D17.

DOI: 10.1149/1.3054273

Google Scholar