Preparation and Properties of SiC Nanocrystallite Reinforced Amorphous Si–B–C–N Ceramics

Article Preview

Abstract:

Amorphous Si–B–C–N ceramics synthesized by polymer thermolysis possess excellent chemical, thermal and mechanical stability at high temperature. Many attentions have been devoted to study the crystallization and stability of Si–B–C–N ceramics. The SiC nanocrystallite reinforced amorphous Si–B–C–N ceramics have been fabricated by pyrolysis of single-source precursors at high temperature. The heat-treatment at high temperature commonly impaired the thermal stability of the composites. Crack and pore limit the development of the composites. New processing routes that overcome those problems are desirable. Here we reported the thermolysis of binary-source precursors mixed by polycarbosilane and boron-modified polyvinylsilazanen to fabricate Si–B–C–N composites with relative densities up to 96%. Green bodies were obtained by compaction of precursors using warm pressing at different temperature. The obtained composites were characterized by Scanning Electron Microscope and X-ray Diffraction.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

785-788

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Bill and F. Aldinger, Precursor-derived covalent ceramics, Adv. Mater. 7 (1995) 775-787.

DOI: 10.1002/adma.19950070903

Google Scholar

[2] M. Briot, J. P. Pillot and J. Dunogues, Comprehensive chemistry of polycarbosilanes, polysilazanes and poly-carbosilazanes as precursors of ceramics, Chem. Rev. 95 (1995) 1443-1477.

DOI: 10.1021/cr00037a014

Google Scholar

[3] P. Colombo, G. Mera, R. Riedel and G. D. Soraru, Polymer Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics, J. Am. Ceram. Soc. 93 (2010) 1805-1837.

DOI: 10.1002/9783527631971.ch07

Google Scholar

[4] C. Haluschka, C. Engel and R. Riedel, Silicon carbonitride ceramics derived from polysilazanes Part II. Investigation of electrical properties, J. Eur. Ceram. Soc. 20 (2000) 1365-1374.

DOI: 10.1016/s0955-2219(00)00009-1

Google Scholar

[5] I. Menapace, G. Mera, R. Riedel, et al., Luminescence of heat-treated silicon-based polymers: promising materials for LED applications, J. Mater. Sci. 43 (2008) 5790-5796.

DOI: 10.1007/s10853-008-2882-9

Google Scholar

[6] L. Ferraioli, D. Ahn, A. Saha, et al., Intensely Photoluminescent Pseudo-Amorphous Silicon OxyCarboNitride Polymer–Ceramic Hybrids, J. Am. Ceram. Soc. 91 (2008) 2422-2424.

DOI: 10.1111/j.1551-2916.2008.02457.x

Google Scholar

[7] A. Saha, S. R. Shah, R. Raj, et al., Polymer-derived SiCN composites with magnetic properties, J. Mater. Res. 18 (2003) 2549-2551.

DOI: 10.1557/jmr.2003.0356

Google Scholar

[8] S. Bernard, M. Weinmann, P. Gerstel, et al., Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion, J. Mater. Chem. 15 (2004) 289-299.

DOI: 10.1039/b408295h

Google Scholar

[9] R. Riedel, L. M. Ruswisch, L. An, et al., Amorphous silicoboron carbonitride ceramic with very high viscosity at temperatures above 1500 ºC, J. Am. Ceram. Soc. 81 (1998) 3341-3344.

DOI: 10.1111/j.1151-2916.1998.tb02780.x

Google Scholar

[10] R. Riedel, A. Kienzle, W. Dressler, et al., A silicoboron carbonitride ceramic stable to 2,000 ºC, Nature. 382 (1996) 796-798.

DOI: 10.1038/382796a0

Google Scholar

[11] N.V. Ravi Kumar, R. Mager, Y. Cai, et al., High temperature deformation behaviour of crystallized Si-BCN ceramics obtained from a boron modified poly (vinyl) silazane polymeric precursor, Scripta Mater. 51 (2004) 65-69.

DOI: 10.1016/j.scriptamat.2004.03.012

Google Scholar

[12] E. Butchereit, K. G. Nickel, A. Mller, Precursor\Derived Si\B\C\N Ceramics: Oxidation Kinetics, J. Am. Ceram. Soc. 84 (2001) 2184-2188.

DOI: 10.1111/j.1151-2916.2001.tb00985.x

Google Scholar

[13] H. P. Baldus, G. Passing, Studies on SiBN(C) ceramics: Oxidation-and Crystallisation Behaviour Lead the Way to Applications, Mater. Res. Soc. Symp. Proc. 346 (1994) 617-622.

DOI: 10.1557/proc-346-617

Google Scholar

[14] R. Kumar, F. Phillipp, F. Aldinger, Oxidation induced effects on the creep properties of nano-crystalline porous Si-BCN ceramics, Mater. Sci. Eng. 445 (2007) 251-258.

DOI: 10.1016/j.msea.2006.09.024

Google Scholar

[15] S.H. Lee, M. Weinmann, P. Gerstel, et al., Extraordinary thermal stability of SiC particulate-reinforced polymer-derived Si-BCN composites, Scripta Mater. 59 (2008) 607-610.

DOI: 10.1016/j.scriptamat.2008.05.029

Google Scholar

[16] K.V. Moraes, L.V. Interrante, Processing, Fracture Toughness, and Vickers Hardness of Allylhydridopolycarbosilane\Derived Silicon Carbide, J. Am. Ceram. Soc. 86 (2003) 342-346.

DOI: 10.1111/j.1151-2916.2003.tb00020.x

Google Scholar

[17] T. Yu, Y. Zhang, Y.J. Li, et al., Crystallization of Novel SiC/SiBCN Ceramic Composites, J. Syn. Crystal. 39 (2010) 1601-1605.

Google Scholar

[18] R. Riedel, G. Passing, H. Schnfelder, et al., Synthesis of dense silicon-based ceramics at low temperatures, Nature. 355 (1992) 714-717.

DOI: 10.1038/355714a0

Google Scholar

[19] R. Haug, M. Weinmann, J. Bill, et al., Plastic forming of preceramic polymers, J. Eur. Ceram. Soc. 19 (1999) 1-6.

Google Scholar

[20] R. Kumar, Y. Cai, P. Gerstel, et al., Processing, crystallization and characterization of polymer derived nano-crystalline SiBCN ceramics, J. Mater. Sci. 41 (2006) 7088-7095.

DOI: 10.1007/s10853-006-0934-6

Google Scholar

[21] Y.L. Li, H. Fan, D. Su, et al., Synthesis, Structures, and Properties of Bulk Si (O) C Ceramics from Polycarbosilane, J. Am. Ceram. Soc. 92 (2009) 2175-2181.

DOI: 10.1111/j.1551-2916.2009.03184.x

Google Scholar

[22] Amir Hossein Tavakoli, Thermodynamic and Kinetic Studies on the Thermal Stability of Amorphous Si–(B–)C–N Ceramics, Ph.D. Thesis (Stuttgart University, Stuttgart, Germany, 2010).

Google Scholar