Design on Thermal Protection Structure of C/SiC Lattice Composite Materials

Article Preview

Abstract:

A new double-layer lattice structure based on C/SiC composite material is described and being investigated as a means to increase the service temperature of thermal protection structure. The design incorporates a C/SiC double-layer sandwich comprising two pyramidal truss cores. The outer layer of the sandwich structure is the thermal protection layer, which can make the heat redistribute. The internal layer is the insulation layer, which can decrease the temperature of the hot components and increase their reliability. The temperature field of C/SiC lattice thermal protection structures with different geometrical parameters was calculated by the finite element software ANSYS. It is found that the thermal behavior of the double-layer lattice thermal structure is affected by the truss geometry, such as truss length and inclination angle. The thermal protection capacity of C/SiC lattice structure is analyzed and compared with the equivalent solid structure. The results indicated that C/SiC lattice thermal protection structure has lower density and better thermal protection property than the traditional thermal protection structures.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

808-811

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Liedtke, I. Olivares, M. Langer, F. Haruvy, Manufacturing and performance testing of sol/gel based oxidation protection systems for reusable space vehicles, J Eur Ceram Soc. 27 (2000) 1493-1502.

DOI: 10.1016/j.jeurceramsoc.2006.05.052

Google Scholar

[2] A. Mue Hlratzer, K. Handrick , H. Pfeiffer, Development of a new cost effective ceramic composite for re-entry heat shield applications, Acta Astronaut. 42 (1998) 533-540.

DOI: 10.1016/s0094-5765(97)00220-8

Google Scholar

[3] S. Bertrand, C. Droillard, R. Pailler, TEM structure of (PyC/SiC)n mutilayered interphases in SiC/ SiC composites. J Eur Ceram Soc.20 (2002) 1-13.

DOI: 10.1016/s0955-2219(99)00086-2

Google Scholar

[4] G. Boitier, J. Vicens, J.L. Chermant, Understanding the creep behavior of a 2.5D Cf-SiC composite I: morphology and microstructure of the as-received material, Mater. Sci. Eng. A. 279 (2000) 73-80.

DOI: 10.1016/s0921-5093(99)00626-7

Google Scholar

[5] A. Dalmaz, P. Ducretd, R.E. Guerjouma, P. Reynaud, P. Franciosi, D. Rouby, G. Fantozzi, J.C. Baboux, Elastic moduli of a 2.5D Cf /SiC composite,Compos. Sci. Technol. 60 (2000) 913-925.

DOI: 10.1016/s0266-3538(99)00180-3

Google Scholar

[6] A. Dalmaz, P. Ducretd, D. Rouby, G. Fantozzi, F. Abbe, Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D C/SiC composite, Compos. Sci. Technol. 58 (1998) 693-699.

DOI: 10.1016/s0266-3538(97)00150-4

Google Scholar

[7] M.C. Halbig, D.N. Brewer, A.J. Eckel, Stressed oxidation of C/SiC composites, NASA/TM 219972107457. New York: NASA, 1997.

Google Scholar

[8] M.C. Halbig, D.N. Brewer and A.J. Eckel, Degradation of continuous fiber ceramic matrix composites under constant loaded conditions, TM 220002209681. New York: NASA, 2000.

DOI: 10.1520/stp15021s

Google Scholar

[9] S. Kiyoshi, M. Hirokim, F. Osamu, K. Hiroshi, I. Takeshi, Developing interfacial carbon-boron-silicon coatings for silicon nitride-fiber reinforced composites for improved oxidation resistance, J. Am. Ceram. Soc. 85 (2002) 1815-1822.

DOI: 10.1111/j.1151-2916.2002.tb00358.x

Google Scholar

[10] J.F. Schulte, J. Schmidt, R. Tamme, U. Kröner, J. Arnold, B. Zeiffer, Oxidation behavior of C/C-SiC coated with SiC-B4C-SiC cordierite oxidation protection system, Mater. Sci. Eng. A. 386 (2004) 428-434.

DOI: 10.1016/j.msea.2004.07.055

Google Scholar

[11] L.T. Zhang, L.F. Cheng, Y.D. Xu, Progress in research work of new CMC-SiC, Aeronautical Manufacturing Technology. 1 (2003) 24-32.

Google Scholar

[12] L.L. Shen, Z.G. Lv, L.J. Yao, Thermal analysis of the primary hot structure for re-entry space vehicle, Structure and Environment Engineering. 33 (2006) 17-22.

Google Scholar