Ultra Precision Grinding of Wafer Scale

Article Preview

Abstract:

Manufacturing moulds for the wafer-scale replication of precision glass optics sets new demands in terms of grinding tool lifetime and the processes to be applied. This paper will present different approaches to grinding processes and kinematics to machine wafer-scale tungsten carbide moulds with diameters of up to 100 mm and more than 100 single aspheric cavities, each featuring form accuracies in the micron range. The development of these processes will be described and advantages and disadvantages of the approaches derived from practical tests performed on an ultra precision grinding machine (Moore Nanotech 350FG) will be discussed. Finally, a comparison between the developed processes is made where achieved form accuracies and surface topography are analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-262

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Bifano, Ductile Regime Grinding Of Brittle Materials, PhD Thesis, North Carolina State University, (1988).

Google Scholar

[2] D. Grimme, K. Rickens, Q. Zhao, C. Heinzel, Dressing of coarse-grained diamond wheels for ductile machining of brittle materials, Towards Synthesis of Micro-/Nanosystems B7 (2007) 305-307.

DOI: 10.1007/1-84628-559-3_53

Google Scholar

[3] K. Liu, X.P. Li, Ductile cutting of tungsten carbide, J. Mater. Process. Technol. 113 (2001) 348-354.

Google Scholar

[4] K. Liu, X.P. Li, M. Rahman, X.D. Liu, CBN tool wear in ductile cutting of tungsten carbide, Wear 255 (2003) 1344-1351.

DOI: 10.1016/s0043-1648(03)00061-9

Google Scholar

[5] H. Suzuki et al., Study on precision grinding of micro aspherical surface: effects of tool errors on workpiece form accuracies and its compensation methods, J. Jpn Soc. Prec. Eng. 65 (1999) l401-405.

Google Scholar

[6] W.K. Chen, T. Kuriyagawa, H. Huang, H. Ono, M. Saeki, K. Syoji, A novel form error compensation technique for tungsten carbide mould insert machining utilizing parallel grinding technology, Key Eng. Mat. 257–258 (2004) 141-146.

DOI: 10.4028/www.scientific.net/kem.257-258.141

Google Scholar

[7] Y. Yamamoto, H. Suzuki, T. Onishi, T. Okino, T. Moriwaki, Precision grinding of microarray lens molding die with 4-axes controlled microwheel, Sci. Tech. Adv. Mat. 8 (2007) 173-176.

DOI: 10.1016/j.stam.2007.02.007

Google Scholar

[8] H. Suzuki, T. Moriwaki, Y. Yamamoto, Y. Goto Precision Cutting of Aspherical Ceramic Molds with Micro PCD Milling Tool, CIRP Ann – Manuf. Tech. 56 (2007) 131-134.

DOI: 10.1016/j.cirp.2007.05.033

Google Scholar

[9] W. Boehlke: Hartmetall - ein moderner Hochleistungswerkstoff, Materialwissenschaften und Werkstofftechnik , no. 33, p.575 – 580, (2002).

DOI: 10.1002/1521-4052(200210)33:10<575::aid-mawe575>3.0.co;2-1

Google Scholar

[10] H. Salmang; H. Scholze, R. Telle: Keramik, Springer-Verlag Berlin Heidelberg, (2007).

Google Scholar

[11] F. Klocke; W. König: Fertigungsverfahren 2 – Schleifen, Hohnen, Läppen, 4., neu überarbeitete Auflage, Springer-Verlag Berlin Heidelberg, (2005).

Google Scholar