[1]
P.A. McKeown, The role of precision engineering in manufacturing of the future, CIRP Ann. - Manufacturing Technology 36 (1987) 495-501.
DOI: 10.1016/s0007-8506(07)60751-3
Google Scholar
[2]
K. Sato, Trend of precision positioning technology, ABCM Sump. Ser. in Mechatronics, 2 (2006) 739-750.
Google Scholar
[3]
J.W. Evans, B. Macintoch, L. Poyneer, K. Morzinski, S. Severson, D. Dillon, D. Gavel, L. Reza, Demonstrating sub-nm closed loop MEMS flattening, Opt. Express 14 (2006) 5558-5570.
DOI: 10.1364/oe.14.005558
Google Scholar
[4]
J. Wang, J. Pu, P. Moore, A practical control strategy for servo-pneumatic actuator systems, Control Eng. Practice, 7 (1999) 1483-1488.
DOI: 10.1016/s0967-0661(99)00115-x
Google Scholar
[5]
N. Shu, G. M. Bone, High steady-state accuracy pneumatic servo positioning system with PVA/PV control and friction compensation, Proc. 2002 IEEE Int. Conf. On Robotics and Automation 3 (2002) 2824-2829.
DOI: 10.1109/robot.2002.1013660
Google Scholar
[6]
M.H. Tsai, T.Y. Hsu, K.R. Pai, M.C. Shih, Precision position control of pneumatic servo table embedded with aerostatic bearing, J. System Design and Dynamics 2 (2008) 940-949.
DOI: 10.1299/jsdd.2.940
Google Scholar
[7]
M. Kadotani, T. Kitagawa, S. Katto, T. Hirayama, T. Matsuoka, H. Yabe, K. Sasaki, Development of pneumatic servo bearing actuator for nanometer positioning, Int. J. Automation Tech. 3 (2009) 249-256.
DOI: 10.20965/ijat.2009.p0249
Google Scholar
[8]
T. Hirayama, T. Kitagawa, M. Kadotani, H. Danjo, T. Matsuoka, K. Sasaki and H. Yabe, Pneumatic servo bearing actuator for ultraprecise positioning: Part 1, Proc. of 23rd ASPE Annual Meeting and 12th ICPE (2008).
DOI: 10.1115/ijtc2007-44101
Google Scholar
[9]
K. Sasaki, T. Hirayama and H. Yabe, Pneumatic servo bearing actuator for ultraprecise positioning: Part 2, Proc. of 23rd ASPE Annual Meeting and 12th ICPE (2008).
DOI: 10.2493/jjspe.74.1086
Google Scholar
[10]
H. Mizumoto, Y. Yabuta, S. Arii, M. Yabuya, Y. Tazoe, A dual-mode pico-positioning system using active aerostatic coupling, Int. J. Precision Eng. and Manufacturing 8 (2007) 32-37.
DOI: 10.1299/jsmelem.2005.3.1009
Google Scholar
[11]
H. Mizumoto, S. Arii, Y. Yabuta, Y. Kami and Y. Tazoe, Active aerostatic bearings for ultraprecision applications, Proc. of the 35th Int. Matador Conf., 12 (2007) 289-292.
DOI: 10.1007/978-1-84628-988-0_65
Google Scholar
[12]
T. Shinshi, K. Sato, A. Shimokobe, A compact aerostatic spindle integrated with an axial positioning actuator for micro and ultra-precision machine tools, Int. J. Automation Technol. 2 (2007) 56-63.
DOI: 10.20965/ijat.2008.p0056
Google Scholar
[13]
F. Al-Bender, On the modelling of the dynamic characteristics of aerostatic bearing films: from stability analysis to active compensation, Precis. Eng., 33 (2009) 117-126.
DOI: 10.1016/j.precisioneng.2008.06.003
Google Scholar
[14]
A. H. Slocum, Precision machine design, Society of Manufacturing Engineers, Dearborn, Michigan (1992) 580-625.
Google Scholar
[15]
A. Sugimoto, H. Danjo, T. Kitagawa, T. Hirayama, T. Matsuoka and K. Sasaki, Development of ultraprecise positioning X-Y stage composed of pneumatic setve bearing actuators, Proc. of IMechE., J. of Engineering Tribol., 225, 5 (2011) 1-8.
DOI: 10.1177/1350650111402874
Google Scholar
[16]
H. Yabe, T. Shiokawa and H. Mori, A study on angular stiffnessand damping properties of externally pressurized gas thrust bearing with surface restriction compensation, Bulletin of the JSME, 26, 222 (1983) 2251-2257.
DOI: 10.1299/jsme1958.26.2251
Google Scholar
[17]
S. Mekid, Introduction to precision machine design and error assessment, Taylor & Francis Group, CRC Press (2009) 149-153.
Google Scholar