[1]
T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. 66 (1995) 3627-3629.
DOI: 10.1063/1.113809
Google Scholar
[2]
D.M. Schaefer, R. Reifenberger, A. Patil, R.P. Andres, Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett. 66 (1995) 1012-1014.
DOI: 10.1063/1.113589
Google Scholar
[3]
L.T. Hansen, A. Kuhle, A.H. Sorensen, J. Bohr, P.E. Lindelof, A technique for positioning nanoparticles using an atomic force microscope, Nanotechnology 9 (1998) 337-342.
DOI: 10.1088/0957-4484/9/4/006
Google Scholar
[4]
D. Wouters, U.S. Schubert, Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized device, Angew. Chem. In. Ed. 43 (2004) 2480-2495.
DOI: 10.1002/anie.200300609
Google Scholar
[5]
D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel, D.J. Müller, Imaging and manipulation of biological structures with the AFM, Micron 33 (2002) 385-397.
DOI: 10.1016/s0968-4328(01)00026-9
Google Scholar
[6]
Z. Liu, Z. Li, G. Wei, Y. Song, L. Wang, L. Sun, Manipulation, dissection, and lithography using modified tapping mode tomic force microscope, Microsc. Res. Tech. 69 (2006) 998-1004.
DOI: 10.1002/jemt.20379
Google Scholar
[7]
P.A. Williams, A. M. Patel, M. Sinclair, A. Seeger, A. Helser, Controlled placement of an individual carbon nanotube onto a microelectromechanical structure, Appl phys. lett. 80 (2002) 2574-2576.
DOI: 10.1063/1.1467701
Google Scholar
[8]
K. Hänel, A. Brinkner, S. Müllegger, A. Winkler, C. Wŏll, Manipulation of organic needles using an STM operated under SEM control, Surf. Sci. 600 (2006) 2411-2416.
DOI: 10.1016/j.susc.2006.03.030
Google Scholar
[9]
M.R. Falvo, G. Clary, A. Helser, S. Paulson, R.M. Taylor II, V. Chi, F.P. Brooks Jr., S. Washburn, R. Superfine, Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes, Microsc. Microanal. 4 (1999) 504-512.
DOI: 10.1017/s1431927698980485
Google Scholar
[10]
L. Guangyong, X. Ning, H. W. Donna, In situ sensing and manipulation of molecules in biological samples using a nanorobotic system, Nanomedicine 1 (2005) 31-40.
Google Scholar
[11]
F. Iwata, K. Ohara, Y. Ishizu, A. Sasaki, H. Aoyama, T. Ushiki, Nanometer-scale manipulation and ultrasonic cutting using an atomic force microscope controlled by a haptic device as a human interface, Jpn. J. Appl. Phys. 47 (2008) 6181-6185.
DOI: 10.1143/jjap.47.6181
Google Scholar
[12]
F. Iwata, S. Kawanishi, H. Aoyama, T. Ushiki, Development of a nano manipulator based on an atomic force microscope coupled with a haptic device: a novel manipulation tool for scanning electron microscopy, Arch. Histol. Cytol. 72 (2009) 271-278.
DOI: 10.1679/aohc.72.271
Google Scholar
[13]
T. Ando, T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita, M. Sakashita, High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work, Jpn. J. Appl. Phys. 45 (2006) 1897-(1903).
DOI: 10.1143/jjap.45.1897
Google Scholar
[14]
A.D.L. Humphris, M.J. Miles, J.K. Hobbs, A mechanical microscope: High-speed atomic force microscopy, Appl. Phys. Lett. 86 (2005) 034106-034108.
DOI: 10.1063/1.1855407
Google Scholar
[15]
A. Sasaki, F. Iwata, A. Katsumata, T. Akiyama, J. Fujiyasu, A stable scanning tunneling microscope designed for investigations of organic thin films in air, Rev. Sci. Instrum. 68 (1997) 1296-1299.
DOI: 10.1063/1.1147892
Google Scholar