Intelligent Fuzzy Ziegler-Nichols-Based Controller Design of a SPM System with Parameters Variation

Article Preview

Abstract:

This research applied a stylus probe without balance and lever arm as in the previous design of a contact-force-controlled Scanning Probe Microscope (SPM) system. The controller integrated both Ziegler-Nichols-based and intelligent fuzzy methods; thus the systems relative stability can be reserved under the nominal conditions. In addition, one can see that both hysteresis and parameter variation effects of the force actuator can be reduced. Comparing the results with the traditional Ziegler-Nichols-based controller by simulation, one can see that the proposed systems are much more robust.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

402-407

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. G. Chetwyud, X. Liu, S.T. Smith, A controlled-force stylus displacement probe, Precis. Eng. 19 (1996), 105-111.

Google Scholar

[2] X. Liu, D.G. Chetwyud, S.T. Smith, W. Wang, Improvement of the fidelity of surface measurement by active damping control, Meas. Sci. Technol. 4 (1993), 1330-1340.

DOI: 10.1088/0957-0233/4/12/004

Google Scholar

[3] M. Bennett, J.H. Dancy, Stylus profiling instrument for measuring statistical properties of smooth optical surfaces, Appl. Optics 20 (1981) 1785-1802.

DOI: 10.1364/ao.20.001785

Google Scholar

[4] D.G. Chetwyud, X. Liu, S.T. Smith, Signal fidelity and tracking force in stylus profilometry, J. Mach. Tool. Manuf. 32 (1992) 239-245.

Google Scholar

[5] G. Neubauer, Force microscopy with a bidirectional capacitor sensor, Rev. Sci. Instrum. 61 (1990) 2296-2308.

Google Scholar

[6] M. Bennett, J.H. Dancy, Stylus profiling instrument for measuring statistical properties of smooth optical surfaces, Appl. Optics 20 (1981), 1785-1802.

DOI: 10.1364/ao.20.001785

Google Scholar

[7] J.I. Seeger, S.B. Crary, Stabilization of statistically actuated mechanical devices, Electro-transducers '97 (1981), Chicago, IL, 1133.

Google Scholar

[8] G. Haugstad, R.R. Jones, Mechanisms of dynamic force microscopy on polyvinyl alcohol: region-specific non-contact and intermittent contact regimes, Ultra microscopy, 76 (1999) 77-86.

DOI: 10.1016/s0304-3991(98)00073-4

Google Scholar

[9] V.V. Prokhorov, S.A. Saunin, Probe-surface interaction mapping in amplitude modulation atomic force microscopy by integrating amplitude-distance and amplitude-frequency curves, Appl. Phys. Lett. 91 (2007) 1063-1065.

DOI: 10.1063/1.2756271

Google Scholar

[10] Information on http: /metrologyinternational. talkware. co. uk/blog/Nano2D3Dsurfaceprofiling.

Google Scholar

[11] J. M. Lin, C. C. Lin, Profiler design with multi-sensor data fusion methods, SICE Annual Conference (2007) 710-715.

DOI: 10.1109/sice.2007.4421074

Google Scholar

[12] P. K. Chang, J. M. Lin, Scanning probe microscope system design with linear velocity transducer for feedback compensation, SICE Annual Conference (2008) 2382-2387.

DOI: 10.1109/sice.2008.4655063

Google Scholar

[13] H. Zhang, D. Liu, Fuzzy Modelling & Fuzzy Control, New York: Springer-Verlag, (2006).

Google Scholar

[14] J. G. Ziegler, N. B. Nichols, Optimum settings for automatic controllers, Trans. ASME, 64 (1942) 759-768.

DOI: 10.1115/1.4019269

Google Scholar