Remote Internal Diameter Measurement of Ring Gauge Based on a Low-Coherence Tandem Scheme

Article Preview

Abstract:

A novel internal diameter measurement method based on a low-coherence tandem scheme is firstly demonstrated. From operational analysis, it is understood that a low-coherence tandem scheme can be served for internal diameter evaluation by using a combination of a transmission grating and a ring gauge instead of a classical Michelson interferometer to store and transmit the internal diameter information. As a result of the experiment, in the present experimental environment, diameter measurement of several millimetres with a relative standard uncertainty of several micrometres was performed. Taken together, these results suggest that the present measurement method is expected to be used as a powerful remote internal diameter calibration tool for next-generation calibration network systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

533-538

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Matsumoto, K. Sasaki, A. Hirai, 103-km-Long Remote Measurements of End Standards Using Low-Coherence Optical-Fiber Tandem Interferometer in Experimental Room, Jpn. J. Appl. Phys. 44 (2005) 6287-6288.

DOI: 10.1143/jjap.44.6287

Google Scholar

[2] H. Matsumoto, K. Sasaki, A. Hirai, Remote Calibration of Length Standards Using 47-km-Long Optical Fiber Network, Jpn. J. Appl. Phys. 44 (2005) L970-L972.

DOI: 10.1143/jjap.44.l970

Google Scholar

[3] H. Matsumoto, K. Sasaki, Remote measurements of practical length standards using optical fiber networks and low-coherence interferometers, Jpn. J. Appl. Phys. 47 (2008) 8590-8594.

DOI: 10.1143/jjap.47.8590

Google Scholar

[4] M. Hirokazu, H. Akiko, Remote Measurements of Lengths by Excess-Fraction Method Using Optical Fiber Networks and Tandem Interferometer, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), OMG5.

DOI: 10.1364/ofc.2009.omg5

Google Scholar

[5] P.A. Flournoy, R.W. McClure, G. Wyntjes, White-Light Interferometric Thickness Gauge, Appl. Opt. 11 (1972) 1907-(1915).

DOI: 10.1364/ao.11.001907

Google Scholar

[6] A. Koch. R. Ulrich, Fiber-optic displacement sensor with 0. 02 [mu]m resolution by white-light interferometry, Sens. Actuator A 25 (1990) 201-207.

DOI: 10.1016/0924-4247(90)87032-e

Google Scholar

[7] Q. Wang, Y.N. Ning, K.T.V. Grattan, A.W. Palmer, A curve fitting signal processing scheme for a white-light interferometric system with a synthetic source, Opt. Laser Technol. 29 (1997) 371-376.

DOI: 10.1016/s0030-3992(97)00043-1

Google Scholar

[8] H. Matsumoto, A. Hirai, Transmission of optical length information through single-mode fiber by a low-coherence tandem interferometer, Opt. Eng. 40 (2001) 2365-2366.

DOI: 10.1117/1.1409395

Google Scholar

[9] H. Matsumoto, A. Hirai, A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators, Opt. Comm. 170 (1999) 217-220.

DOI: 10.1016/s0030-4018(99)00471-x

Google Scholar

[10] A. Hirai, H. Matsumoto, Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample, Opt. Lett. 28 (2003) 2112-2114.

DOI: 10.1364/ol.28.002112

Google Scholar

[11] A. Hirai, H. Matsumoto, Measurement of group refractive index wavelength dependence using a low-coherence tandem interferometer, Appl. Opt. 45 (2006) 5614-5620.

DOI: 10.1364/ao.45.005614

Google Scholar

[12] H. Matsumoto, K. Sasaki, A. Hirai, Remote measurement of refractive index of air using tandem interferometer over long optical fiber, Jpn. J. Appl. Phys. 47 (2008) 7386-7389.

DOI: 10.1143/jjap.47.7386

Google Scholar

[13] P.V. Volkov, A.V. Goryunov, V.M. Daniltsev, A.Y. Luk'yanov, D.A. Pryakhin, A.D. Tertyshnik, O.I. Khrykin, V.I. Shashkin, Novel technique for monitoring of MOVPE processes, J. Cryst. Growth 310 (2008) 4724-4726.

DOI: 10.1016/j.jcrysgro.2008.07.074

Google Scholar

[14] C. -F. Kao, S. -K. Tsai, S. -H. Lu, Measuring cell gap of liquid crystal displays by scanning white-light tandem interferometry, Jpn. J. Appl. Phys. 48 (2009) 106508-106508-4.

DOI: 10.1143/jjap.48.106508

Google Scholar

[15] D. Wei, S. Takahashi, K. Takamasu, H. Matsumoto, Femtosecond optical frequency comb-based tandem interferometer, J. Europ. Opt. Soc. Rap. Public. 4 (2009) 09043-1-09043-4.

Google Scholar