[1]
H. Matsumoto, K. Sasaki, A. Hirai, 103-km-Long Remote Measurements of End Standards Using Low-Coherence Optical-Fiber Tandem Interferometer in Experimental Room, Jpn. J. Appl. Phys. 44 (2005) 6287-6288.
DOI: 10.1143/jjap.44.6287
Google Scholar
[2]
H. Matsumoto, K. Sasaki, A. Hirai, Remote Calibration of Length Standards Using 47-km-Long Optical Fiber Network, Jpn. J. Appl. Phys. 44 (2005) L970-L972.
DOI: 10.1143/jjap.44.l970
Google Scholar
[3]
H. Matsumoto, K. Sasaki, Remote measurements of practical length standards using optical fiber networks and low-coherence interferometers, Jpn. J. Appl. Phys. 47 (2008) 8590-8594.
DOI: 10.1143/jjap.47.8590
Google Scholar
[4]
M. Hirokazu, H. Akiko, Remote Measurements of Lengths by Excess-Fraction Method Using Optical Fiber Networks and Tandem Interferometer, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), OMG5.
DOI: 10.1364/ofc.2009.omg5
Google Scholar
[5]
P.A. Flournoy, R.W. McClure, G. Wyntjes, White-Light Interferometric Thickness Gauge, Appl. Opt. 11 (1972) 1907-(1915).
DOI: 10.1364/ao.11.001907
Google Scholar
[6]
A. Koch. R. Ulrich, Fiber-optic displacement sensor with 0. 02 [mu]m resolution by white-light interferometry, Sens. Actuator A 25 (1990) 201-207.
DOI: 10.1016/0924-4247(90)87032-e
Google Scholar
[7]
Q. Wang, Y.N. Ning, K.T.V. Grattan, A.W. Palmer, A curve fitting signal processing scheme for a white-light interferometric system with a synthetic source, Opt. Laser Technol. 29 (1997) 371-376.
DOI: 10.1016/s0030-3992(97)00043-1
Google Scholar
[8]
H. Matsumoto, A. Hirai, Transmission of optical length information through single-mode fiber by a low-coherence tandem interferometer, Opt. Eng. 40 (2001) 2365-2366.
DOI: 10.1117/1.1409395
Google Scholar
[9]
H. Matsumoto, A. Hirai, A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators, Opt. Comm. 170 (1999) 217-220.
DOI: 10.1016/s0030-4018(99)00471-x
Google Scholar
[10]
A. Hirai, H. Matsumoto, Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample, Opt. Lett. 28 (2003) 2112-2114.
DOI: 10.1364/ol.28.002112
Google Scholar
[11]
A. Hirai, H. Matsumoto, Measurement of group refractive index wavelength dependence using a low-coherence tandem interferometer, Appl. Opt. 45 (2006) 5614-5620.
DOI: 10.1364/ao.45.005614
Google Scholar
[12]
H. Matsumoto, K. Sasaki, A. Hirai, Remote measurement of refractive index of air using tandem interferometer over long optical fiber, Jpn. J. Appl. Phys. 47 (2008) 7386-7389.
DOI: 10.1143/jjap.47.7386
Google Scholar
[13]
P.V. Volkov, A.V. Goryunov, V.M. Daniltsev, A.Y. Luk'yanov, D.A. Pryakhin, A.D. Tertyshnik, O.I. Khrykin, V.I. Shashkin, Novel technique for monitoring of MOVPE processes, J. Cryst. Growth 310 (2008) 4724-4726.
DOI: 10.1016/j.jcrysgro.2008.07.074
Google Scholar
[14]
C. -F. Kao, S. -K. Tsai, S. -H. Lu, Measuring cell gap of liquid crystal displays by scanning white-light tandem interferometry, Jpn. J. Appl. Phys. 48 (2009) 106508-106508-4.
DOI: 10.1143/jjap.48.106508
Google Scholar
[15]
D. Wei, S. Takahashi, K. Takamasu, H. Matsumoto, Femtosecond optical frequency comb-based tandem interferometer, J. Europ. Opt. Soc. Rap. Public. 4 (2009) 09043-1-09043-4.
Google Scholar