[1]
C.R. Farrar, K. Worden, An introduction to structural health monitoring, Philosophical Transactions of the Royal Society, Series A 365 (2007) 303-315.
Google Scholar
[2]
K. Worden, C.R. Farrar, G. Manson, G. Park, The fundamental axioms of structural health monitoring, Proceedings of the Royal Society, Part A 463 (2007) 1639-1664.
DOI: 10.1098/rspa.2007.1834
Google Scholar
[3]
H. Sohn, Effects of environmental and operational variability on structural health monitoring, Philosophical Transactions of the Royal Society, Part A, 365 (2007) 539-559.
Google Scholar
[4]
H. M. Kim, T. J. Bartkowicz, An experimental study for damage detection using a hexagonal truss, Computers and Structures, 79 (2001) 173-182.
DOI: 10.1016/s0045-7949(00)00126-7
Google Scholar
[5]
L. Y. Cheung, K. Worden, J. A. Rongong, Damage detection in an aircraft component model, Proceedings of the 19th International Modal Analysis Conference, IMAC XIX, Kissimmee, Florida, (2001) 1234-1241.
Google Scholar
[6]
E. Papatheou, G. Manson, R.J. Barthorpe, K. Worden, The use of pseudo-faults for novelty detection in SHM, Journal of Sound and Vibration, 329 (2010) 2349-2366.
DOI: 10.1016/j.jsv.2009.07.020
Google Scholar
[7]
M. Weiland, M. Link, Matfem 99 User's Guide, Version 26-May-2000, University of Kassel, (2000).
Google Scholar
[8]
R. Blevins, Formulas for natural frequency and mode shape, Krieger Publishing Company, (1984).
Google Scholar
[9]
K. Worden, G. Manson, N. R. J. Fieller, Damage detection using outlier analysis, Journal of Sound and Vibration 229 (2000) 647-667.
DOI: 10.1006/jsvi.1999.2514
Google Scholar
[10]
V. Barnett, T. Lewis, Outliers in Statistical Data, John Wiley and Sons, Chichester, (1994).
Google Scholar
[11]
K. Worden, A.J. Lane, Damage identification using support vector machines, Smart Materials and Structures, 10 (2001) 540-547.
DOI: 10.1088/0964-1726/10/3/317
Google Scholar
[12]
N. Christianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel-based Learning Methods, Cambridge University Press, (2000).
DOI: 10.1017/s0263574700232827
Google Scholar
[13]
J. Robinson, Support vector machine learning, Saarbrucken: VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG (2008).
Google Scholar
[14]
B. Schölkopf, A.J. Smola, Learning with kernels, Cambridge, Mass.: MIT Press Ltd. (2002).
Google Scholar
[15]
C.W. Hsu, C.J. Lin, A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks, 13 (2002) 415-25.
DOI: 10.1109/72.991427
Google Scholar
[16]
S.R. Gunn, Matlab Support Vector Machine Toolbox, 2. 1 ed, School of Electronics and Computer Science, University of Southampton (2001).
Google Scholar
[17]
C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, (1995).
Google Scholar
[18]
T. Anderson, The statistical analysis of time series, Wiley, New York, (1971).
Google Scholar
[19]
R. Perman, Cointegration: an introduction to the literature, Journal of Economic Studies, 18 (1993).
Google Scholar
[20]
E.J. Cross, K. Worden, Q. Chen, Cointegration; a novel approach for the removal of environmental trends in structural health monitoring data, Proceedings of the Royal Society – Series A, 467 (2011) 2712-2732.
DOI: 10.1098/rspa.2011.0023
Google Scholar
[21]
D. Dickey, W. Fuller, Distribution of the estimators for autoregressive time series with a unit root, Journal of the American statistical association, (1979) 427–431.
DOI: 10.1080/01621459.1979.10482531
Google Scholar
[22]
D. Dickey, W. Fuller, Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica: Journal of the Econometric Society, 49 (1981) 1057–1072.
DOI: 10.2307/1912517
Google Scholar
[23]
W.A. Fuller, Introduction to statistical time series, Wiley Series in Probability and Statistics, Wiley Interscience, second edition, (1996).
Google Scholar
[24]
S. Johansen, Likelihood-based inference in cointegrated vector autoregressive models, Oxford University Press, (1995).
DOI: 10.1093/0198774508.003.0002
Google Scholar
[25]
G. Manson, Identifying damage sensitive, environment insensitive features for damage detection, Proceedings of the IES conference, Swansea, UK, (2002).
Google Scholar
[26]
D. Montgomery, Introduction to statistical quality control, John Wiley and Sons, (2009).
Google Scholar
[27]
E.J. Cross, K. Worden, G. Manson, S.G. Pierce, Cointegration for the removal of environmental trends in SHM feature data, an application to Lamb wave-based SHM, Submitted to Proceedings of the Royal Society, Series A, (2011).
Google Scholar