[1]
T. Uhl, P. Kohut, K. Holak, K. Krupiński, Vision based condition assessment of structures, Journal of Physics, Conference Series, vol. 305 (2011) p.1–10.
DOI: 10.1088/1742-6596/305/1/012043
Google Scholar
[2]
T. Uhl, P. Kohut, K. Holak, Structure deflection examination by means of correlation coefficient, Proc. of the 13th School of Modal Analysis, Publishing House of the Institute for Sustainable Technologies, National Research Institute. Radom, 2009, pp.173-180.
Google Scholar
[3]
P. Kohut, P. Kurowski, The integration of vision based measurement system and modal analysis for detection and localization of damage, Engineering achievements across the global village, The International Journal of INGENIUM, Cracow, 2005, pp.391-398.
Google Scholar
[4]
P. Kohut, P. Kurowski, The integration of vision system and modal analysis for SHM applications, Proc. of the IMAC-XXIV a conference and exposition on structural dynamics, January 30-February 02 St. Louis, 2006, pp.1-8.
Google Scholar
[5]
T. Uhl, P. Kohut, K. Holak, K. Krupiński, Vision based vibration and deformation measurement, Proc. of the 5th European workshop on Structural Health Monitoring 2010, DEStech Publications, Inc., Pennsylvania, 2010, p.1005–1010.
Google Scholar
[6]
T.C. Chu, W. F. Ranson, M.A. Sutton, W. H. Peters, Application of digital-image correlation techniques to experimental mechanics. Exp Mech. 25 (1985) p.232–24.
DOI: 10.1007/bf02325092
Google Scholar
[7]
P. F. Luo, Y.J. Chao, M.A. Sutton, W. H. Peters, Accurate Measurement of Three-dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision, Experimental Mechanics (1993) pp.123-132.
DOI: 10.1007/bf02322488
Google Scholar
[8]
V. Tiwari, M.A. Sutton, S.R. McNeill, Assessment of High Speed Imaging Systems for 2D and 3D Deformation Measurements: Methodology Development and Validation, Experimental Mechanics 47 (2007) p.561–579.
DOI: 10.1007/s11340-006-9011-y
Google Scholar
[9]
G. Budzik, M. Grzelka, T. Markowski, M. Oleksy, Evaluation of silicone mould accuracy with use of optical measurements, Measurement, Automation & Monitoring 2010 no. 1, pp.18-19.
Google Scholar
[10]
M. Wieczorowsk, R. Koteras, P. Znaniecki, Use of optical scanner for car body quality control, Measurement, Automation & Monitoring 1 (2010) pp.40-41.
Google Scholar
[11]
J. Gancarczyk, T. Gancarczyk , Non-invasive museum object inspection by VIS photography, UV fluorescence and IR reflectography, Measurement, Automation & Monitoring 3 (2010) pp.268-271.
Google Scholar
[12]
G. Sierra, B. Wattrisse, C. Bordreuil, Structural Analysis of Steel to Aluminum Welded Overlap Joint by Digital Image Correlation, Experimental Mechanics 48 (2008) p.213–223.
DOI: 10.1007/s11340-007-9112-2
Google Scholar
[13]
T.A. Berfield, J.K. Patel, R.G. Shimmin, P. V. Braun, J. Lambros, N.R. Sottos, Micro- and Nanoscale Deformation Measurement of Surface and Internal Planes via Digital Image Correlation, Experimental Mechanics 47 (2007) p.51–62.
DOI: 10.1007/s11340-006-0531-2
Google Scholar
[14]
N. Li, M.A. Sutton, X. Li, H.W. Schreier, Full-field Thermal Deformation Measurements in a Scanning Electron Microscope by 2D Digital Image Correlation, Experimental Mechanics 48 (2008) p.635–646.
DOI: 10.1007/s11340-007-9107-z
Google Scholar
[15]
J.D. Helm, Digital Image Correlation for Specimens with Multiple Growing Cracks, Experimental Mechanics 48 (2008) p.753–762.
DOI: 10.1007/s11340-007-9120-2
Google Scholar
[16]
S. Roux, F. Hild, Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches, International Journal of Fracture v. 140 (2006) p.141–157.
DOI: 10.1007/s10704-006-6631-2
Google Scholar
[17]
J. Rethore, A. Gravoil, F. Morestin, A. Combescure, Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral, International Journal of Fracture 132 (2005) p.65–79.
DOI: 10.1007/s10704-004-8141-4
Google Scholar
[18]
Y. Fujun, H. Xiaoyuan, Digital speckle projection for vibration measurement by applying digital image correlation method, Key Engineering Materials 326-328 (2006) pp.99-102.
DOI: 10.4028/www.scientific.net/kem.326-328.99
Google Scholar
[19]
S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, H. Kikuta, Bridge deflection measurement using digital image correlation, Experimental Techniques 31(1) (2007) pp.34-40.
DOI: 10.1111/j.1747-1567.2006.00132.x
Google Scholar
[20]
B. Zitova, J. Flusser, Image registration methods: A survey, Image and Vision Computing 21 (2003) pp.977-1000.
DOI: 10.1016/s0262-8856(03)00137-9
Google Scholar
[21]
R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, (2004).
Google Scholar
[22]
Y. Ma, S. Soatto, J. Kosetska , S. Sastry, An Invitation to 3D Computer Vision, Springer-Verlag, New York, (2004).
Google Scholar
[23]
R. Gonzales , R. Woods, Digital Image Processing, Prentice Hall, (2002).
Google Scholar
[24]
J. Russ , Image Processing Handbook, CRC Press (1998).
Google Scholar
[25]
P. Kuras, T. Owerko, Ł. Ortyl, R. Kocierz, P. Kohut, K. Holak, K. Krupiński, Comparison of Methods for Measuring Deflection and Vibration of Bridges, Joint International Symposium on Deformation Monitoring, 2-4 November 2011, Hong Kong (article in press).
Google Scholar