[1]
Z. A. B. Ahmad. Numerical Simulations of Lamb waves in plates using a semi-analytical fi- nite element method. PhD thesis, Otto-von-Guericke-University of Magdeburg, Fortschritt- Berichte VDI Reihe 20, Nr. 437, Du¨sseldorf: VDI Verlag, ISBN: 978-3-18-343720-7, (2011).
Google Scholar
[2]
C. Boller, F. -K. Chang, and Y. Fijino. Encyclopedia of Structural Health Monitoring. JohnWiley & Sons, ISBN-10: 0470058226, (2009).
Google Scholar
[3]
Y. Cho. Estimation of ultrasonic guided wave mode conversion in a plate with thick- ness variation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(3): 591–603, (2000).
DOI: 10.1109/58.842046
Google Scholar
[4]
V. Giurgiutiu. Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Aca- demic Press (Elsevier), ISBN-13: 978-0-12-088760-6, (2008).
Google Scholar
[5]
L. Mallet, B. C. Lee, W. J. Staszewski, and F. Scarpa. Structural health monitoring using scanning laser vibrometry: II. Lamb waves for damage detection. Smart Materials and Structures, 13: 261–269, (2004).
DOI: 10.1088/0964-1726/13/2/003
Google Scholar
[6]
G. Mook, J. Pohl, and F. Michel. Non-destructive characterization of smart CFRP struc- tures. Smart Materials and Structures, 12: 997–1004, (2003).
DOI: 10.1088/0964-1726/12/6/019
Google Scholar
[7]
J. Pohl, C. Willberg, U. Gabbert, and G. Mook. Theoretical analysis and experimental determination of the dynamic behaviour of piezoceramic actuators for SHM. Experimental Mechanics, 51(5), (2011).
DOI: 10.1007/s11340-011-9503-2
Google Scholar
[8]
D. Schmidt. Dokumentation CFK-Testplatten. Technical report, DLR, Institute of Com- posite Structures and Adaptive Systems, (2010).
Google Scholar
[9]
H. Sohn, D. Dutta, J. Y. Yang, M. DeSimio, S. Olson, and E. Swenson. Automated detec- tion of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Materials and Structures, 20(4): 045017, (2011).
DOI: 10.1088/0964-1726/20/4/045017
Google Scholar
[10]
Z. Su and L. Ye. Identification of Damage Using Lamb Waves: From Fundamentals to Applications. Springer, ISBN: 978-1-84882-783-7, (2009).
Google Scholar
[11]
I. A. Viktorov. Rayleigh and Lamb Waves. Plenum Press, (1967).
Google Scholar
[12]
J. M. Vivar-Perez, U. Gabbert, H. Berger, R. Rodriguez-Ramos, J. Bravo-Castillero, R. Guinovart-Diaz, and F. J. Sabina. A dispersive nonlocal model for wave propagation in periodic composites. Journal of Mechanics of Materials and Structures, 4(5): 951–976, (2009).
DOI: 10.2140/jomms.2009.4.951
Google Scholar
[13]
P. D. Wilcox, M. J. S. Lowe, and P. Cawley. Mode and transducer selection for long range Lamb wave inspection. Journal of Intelligent Material Systems and Structures, 12: 553–565, (2001).
DOI: 10.1177/10453890122145348
Google Scholar
[14]
C. Willberg, J. M. Duczek, S. and Vivar-Perez, D. Schmicker, and U. Gabbert. Comparison of different higher order finite element schemes for the simulation of Lamb waves. Computer Methods in Applied Mechanics and Engineering, 2012 (in Review).
DOI: 10.1016/j.cma.2012.06.011
Google Scholar
[15]
C. Willberg, S. Koch, G. Mook, U. Gabbert, and J. Pohl. Continuous mode conversion of Lamb waves in CFRP plates. Smart Materials and Structures, in review, (2012).
DOI: 10.1088/0964-1726/21/7/075022
Google Scholar
[16]
C. Willberg, J. M. Vivar-Perez, and U. Gabbert. Lamb wave interaction with defects in homogeneous plates. In International Conference on Structural Engineering Dynamics. ICEDyn Ericeira, Portugal. 22. -24. Juni, 2009, (2009).
Google Scholar