Development, Validation and Comparison of Higher Order Finite Element Approaches to Compute the Propagation of Lamb Waves Efficiently

Article Preview

Abstract:

When considering structural health monitoring (SHM) applications efficient and powerful numerical methods are required to predict the behavior of ultrasonic guided waves and to design SHM systems. The existing commercial explicit finite element analysis tools based on standard linear displacement elements quickly reach their limits when applied to ultrasonic waves in thin plates, so called Lamb waves. It is known that the required temporal and spatial resolution causes enormous computational costs. One resort to overcome this problem is the application of special finite elements utilizing higher order polynomial shape functions (p > 2). The current paper is focused on the development of such higher order finite elements and the verification of their accuracy and performance. In the paper we compare and evaluate the capabilities of spectral finite elements, p-version finite elements and isogeometric finite elements. Their advantages and disadvantages with respect to ultrasonic wave propagation problems are discussed and their properties are demonstrated by solving a benchmark problem. Higher order finite elements with varying polynomial degrees in longitudinal and transversal direction (anisotropic ansatz space) are investigated and convergence studies are performed. The results of the convergence studies are summarized and a guideline to estimate the optimal discretization is prepared. If the required accuracy is known, the proposed guideline provides a helpful means to determine both the element size and the polynomial degree template for a given model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-105

Citation:

Online since:

July 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Lamb, On waves in an elastic plate, P Roy Soc Lond A Mat, vol. 93, p.114–128, mar (1917).

Google Scholar

[2] C. Boller, W. Staszewski, and G. Tomlinson, Health Monitoring of Aerospace Structures. John Wiley & Sons, (2004).

Google Scholar

[3] A. Viktorov, I., Rayleigh and Lamb Waves. Plenum Press New York, (1967).

Google Scholar

[4] V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press (Elsevier), (2008).

Google Scholar

[5] A. Düster, High Order Finite Elements for Three-Dimensional, Thin-Walled Nonlinear Continua. PhD thesis, TU Munich, (2002).

Google Scholar

[6] B. Szabò and I. Babǔska, Finite Element Analysis. John Wiley and Sons, (1991).

Google Scholar

[7] D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation - I validation, Geophys J Int, vol. 149, p.390–412, (2002).

DOI: 10.1046/j.1365-246x.2002.01653.x

Google Scholar

[8] P. Kudela and W. Ostachowicz, 3D time-domain spectral elements for stress waves modelling, J Phys Conf Ser, vol. 181, p.1–8, (2009).

DOI: 10.1088/1742-6596/181/1/012091

Google Scholar

[9] J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, Isogeometric analysis of structural vibrations, Comput Method Appl M, vol. 195, p.5257–5296, (2006).

DOI: 10.1016/j.cma.2005.09.027

Google Scholar

[10] T. J. R. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Method Appl M, vol. 194, p.4135–4195, (2005).

DOI: 10.1016/j.cma.2004.10.008

Google Scholar

[11] C. Becker, Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse. PhD thesis, RU Bochum, (2007).

Google Scholar

[12] E. Rank, A. Düster, V. Nübel, K. Preusch, and O. T. Bruhns, High order finite elements for shells, Comput Method Appl M, vol. 194, p.2494–2512, (2005).

DOI: 10.1016/j.cma.2004.07.042

Google Scholar

[13] K. Weinberg, Ein Finite-Elemente-Konzept zur lokalen Netzverdichtung und seine Anwendung auf Koppel- und Kontaktprobleme. PhD thesis, OvGU Magdeburg, (1996).

Google Scholar

[14] K. -J. Bathe, Finite-Elemente-Methoden. Springer, (2002).

Google Scholar

[15] T. J. R. Hughes, The Finite Element Method. Prentice-Hall International Limited, (1987).

Google Scholar

[16] D. Schmicker, Development and testing of higher order finite elements based on Lagrange polynomials for the analysis of guided ultrasonic waves in thin-walled structures, Diploma thesis, OvGU Magdeburg, (2011).

Google Scholar

[17] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric analysis: Toward integration of CAD and FEA. John Wiley & Sons, (2009).

DOI: 10.1002/9780470749081

Google Scholar

[18] C. Willberg and U. Gabbert, Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications, Acta Mechanica, vol. 10. 1007/s00707-012-0644-x (online first), (2012).

DOI: 10.1007/s00707-012-0644-x

Google Scholar

[19] J. A. Cottrell, T. J. R. Hughes, and A. Reali, Studies of refinement and continuity in isogeometric structural analysis, Comput Method Appl M, vol. 196, p.4160–4183, (2007).

DOI: 10.1016/j.cma.2007.04.007

Google Scholar

[20] I. Bartoli, F. Scalea, M. Fateh, and E. Viola, Modeling guided wave propagation with application to the long-range defect detection in railroad tracks, NDT & E, vol. 38, p.325–334, (2005).

DOI: 10.1016/j.ndteint.2004.10.008

Google Scholar

[21] D. P. Flanagan and T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int J Numer Meth Eng, vol. 17, p.679–706, (1981).

DOI: 10.1002/nme.1620170504

Google Scholar

[22] T. Belytschko and L. P. Bindeman, Assumed strain stabilization of the eight node hexahedral element, Comput Method Appl M, vol. 105, p.225–260, (1993).

DOI: 10.1016/0045-7825(93)90124-g

Google Scholar