[1]
Geetha M., Singh A.K., Asokamani R. and Gogia A.K., Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog Mater Sci 54 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[2]
Otsuka, K., Ren, X., Physical metallurgy of ti-ni-based shape memory alloys. Prog Mater Sci 50 (2005) 511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[3]
Machado, L., Savi, M., Medical applications of shape memory alloys. Braz J Med Biol Res 36 (2003) 683-691.
DOI: 10.1590/s0100-879x2003000600001
Google Scholar
[4]
Thompson, S., An overview of nickel titanium alloys used in dentistry. Int Endontic J 33 (2000) 297-310.
Google Scholar
[5]
Geurtsen, W., Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med 13 (2002) 71-84.
Google Scholar
[6]
Yamamoto, A., Honma, R., Sumita, M., Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39 (1998) 331-340.
DOI: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>3.0.co;2-e
Google Scholar
[7]
Yamamoto, A., Kohyama, Y., Hanawa, T., Mutagenicity evaluation of forty-one metal salts by the umu test. J Biomed Mater Res 59 (2002) 176-183.
DOI: 10.1002/jbm.1231
Google Scholar
[8]
Fletcher, G., Rossetto, F., Turnbull, J., Nieboer, E., Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environ Health Perspect 102 (1994) 69-79.
DOI: 10.2307/3431766
Google Scholar
[9]
Rossi, S., Deorian, F., Pegoretti, A., D'Orazio, D., Gialanella, S., Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf Coat Technol 202 (2008) 2214-2222.
DOI: 10.1016/j.surfcoat.2007.09.013
Google Scholar
[10]
Rho, J.Y., Tsui, T., Pharr, G., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18 (1997) 1325 -1330.
DOI: 10.1016/s0142-9612(97)00073-2
Google Scholar
[11]
Huiskes, R., Weinans, H., Rietbergen, B., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 274 (1992) 124-134.
DOI: 10.1097/00003086-199201000-00014
Google Scholar
[12]
Niinomi, M., Mechanical properties of biomedical titanium alloys. Mater Sci Eng, A 243 (1998) 231 - 236.
Google Scholar
[13]
Katti, K.S., Biomaterials in total joint replacement. Colloids Surf, B 39 (2004) 133 - 142.
Google Scholar
[14]
Matsuno, H., Yokoyama, A., Watari, F., Uo, M., Kawasaki, T., Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22 (2001) 1253-1262.
DOI: 10.1016/s0142-9612(00)00275-1
Google Scholar
[15]
Eisenbarth, E., Velten., D., Mller, M., Thull, R., Breme, J. Biocompatibility of [beta]-stabilizing elements of titanium alloys. Biomaterials 25 (2004) 5705-5713.
DOI: 10.1016/j.biomaterials.2004.01.021
Google Scholar
[16]
Scarano, A., Carlo, F., Quaranta, M., Piattelli, A., Bone response to zirconia ceramic implants: An experimental study in rabbits. J Oral Implantol 29 (2003) 8-12.
DOI: 10.1563/1548-1336(2003)029<0008:brtzci>2.3.co;2
Google Scholar
[17]
Abdel-Hady, M., Hinoshita, K., Morinaga, M. General approach to phase stability and elastic properties of beta-type Ti-alloys using electronic parameters. Scr Mater 55 (2006) 477-480.
DOI: 10.1016/j.scriptamat.2006.04.022
Google Scholar
[18]
Song, Y., Xu, D.S., Yang, R., Li, D., Wu, W.T., Guo, Z.X., Theoretical study of the effects of alloying elements on the strength and modulus of [beta]-type bio-titanium alloys. Mater Sci Eng, A 260 (1999) 269-274.
DOI: 10.1016/s0921-5093(98)00886-7
Google Scholar
[19]
Niinomi, M., Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed 1 (2008) 30-42.
Google Scholar
[20]
Laheurte, P., Prima, F., Eberhardt, A., Gloriant, T., Wary, M., Patoor, E., Mechanical properties of low modulus titanium alloys designed from the electronic approach. J Mech Behav Biomed 3 (2010) 565-573.
DOI: 10.1016/j.jmbbm.2010.07.001
Google Scholar
[21]
Gibson, L., Ashby, M., Cellular Solids: Structure and Properties. 2nd Ed., Cambridge University Press, (1997).
Google Scholar
[22]
Ryan, G., Pandit, A., Apatsidis, D., Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006) 2651-2670.
DOI: 10.1016/j.biomaterials.2005.12.002
Google Scholar
[23]
Wolfarth, D., Ducheyne, P., Effect of a change in interfacial geometry on the fatigue strength of porous-coated ti-6al-4v. J Biomed Mater Res 28 (1994) 417-425.
DOI: 10.1002/jbm.820280403
Google Scholar
[24]
Donachie, M., Titanium: A Technical Guide. 2nd ed. ASM International, (2000).
Google Scholar
[25]
Dunand, D.C., Processing of titanium foams. Adv Eng Mater 6 (2004) 369-376.
Google Scholar
[26]
Patil, K.C., Aruna, S.T., Ekambaram, S., Combustion synthesis. Curr Opin Solid St M 2 (1997) 158-165.
Google Scholar
[27]
Oh, I.H., Nomura, N., Masahashi, N., Hanada, S., Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 49 (2003) 1197-1202.
DOI: 10.1016/j.scriptamat.2003.08.018
Google Scholar
[28]
Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., et al. Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J Mater Sci: Mater Med 12 (2001) 225-231.
DOI: 10.4028/www.scientific.net/msf.308-311.374
Google Scholar
[29]
Davis, N.G., Teisen, J., Schuh, C., Dunand, D.C., Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J Mater Res 16 (2001) 1508-1519.
DOI: 10.1557/jmr.2001.0210
Google Scholar
[30]
Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46 (2001) 559- 632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[31]
Wen, C.E., Yamada, Y., Shimojima, K., Chino, Y., Hosokawa, H., Mabuchi, M., Novel titanium foam for bone tissue engineering. J Mater Res 17 (2002) 2633-2639.
DOI: 10.1557/jmr.2002.0382
Google Scholar
[32]
Laptev, A., Bram, M., Buchkremer, H.P., Stöver, D., Study of production route for titanium parts combining very high porosity and complex shape. Powder Metall 47 (2004) 85-92.
DOI: 10.1179/003258904225015536
Google Scholar
[33]
Kieback, B., Neubrand, A., Riedel, H., Processing techniques for functionally graded materials. Mater Sci Eng, A 362 (2003) 81- 106.
DOI: 10.1016/s0921-5093(03)00578-1
Google Scholar
[34]
Imwinkelried, T., Mechanical properties of open-pore titanium foam. J Biomed Mater Res A 81A (2007) 964-970.
DOI: 10.1002/jbm.a.31118
Google Scholar
[35]
Ryan, G.E., Pandit, A.S., Apatsidis, D.P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29 (2008) 3625-3635.
DOI: 10.1016/j.biomaterials.2008.05.032
Google Scholar
[36]
Stamp, R., Fox, P., ONeill, W., Jones, E., Sutcliffe, C., The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Sci: Mater Med 20 (2009) 1839-1848.
DOI: 10.1007/s10856-009-3763-8
Google Scholar
[37]
Berry, E., Brown, J., Connell, M., Craven, C., Efford, N., Radjenovic, A., et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys 19 (1997) 90-96.
DOI: 10.1016/s1350-4533(96)00039-2
Google Scholar
[38]
Cachinho, S., Correia, R., Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J Mater Sci: Mater Med 19 (2008) 451-457.
DOI: 10.1007/s10856-006-0052-7
Google Scholar
[39]
Li, J.P., de Groot, K., Layrolle, P., Improvement of porous Ti with thicker struts. Key Eng Mater 240-242 (2003) 547-550.
DOI: 10.4028/www.scientific.net/kem.240-242.547
Google Scholar