A Brief Review of Biomedical Shape Memory Alloys by Powder Metallurgy

Article Preview

Abstract:

In the realm of bioimplantation, titanium-based Shape Memory Alloys (SMAs) exhibit phenomenal versatility, with successful application in diverse fields. One area of particular interest is that of orthopaedics, where the unique properties of SMAs offer a range of benefits. That said, existing alloys still have unresolved issues concerning biocompatibility and osseointegration. Primary concerns include carcinogenicity, allergenicity and a significant mismatch between the Young’s moduli of bone and osteoimplants; issues that could be addressed via a novel porous titanium alloy. With that in mind, this paper seeks to provide a review identifying promising candidates for new, perfectly biocompatible alloys for production via powder metallurgy. Furthermore, an attempt will also be made to summarise existing research into appropriate methods for the production of a porous Ti-based SMA implant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-200

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Geetha M., Singh A.K., Asokamani R. and Gogia A.K., Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog Mater Sci 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[2] Otsuka, K., Ren, X., Physical metallurgy of ti-ni-based shape memory alloys. Prog Mater Sci 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[3] Machado, L., Savi, M., Medical applications of shape memory alloys. Braz J Med Biol Res 36 (2003) 683-691.

DOI: 10.1590/s0100-879x2003000600001

Google Scholar

[4] Thompson, S., An overview of nickel titanium alloys used in dentistry. Int Endontic J 33 (2000) 297-310.

Google Scholar

[5] Geurtsen, W., Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med 13 (2002) 71-84.

Google Scholar

[6] Yamamoto, A., Honma, R., Sumita, M., Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39 (1998) 331-340.

DOI: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>3.0.co;2-e

Google Scholar

[7] Yamamoto, A., Kohyama, Y., Hanawa, T., Mutagenicity evaluation of forty-one metal salts by the umu test. J Biomed Mater Res 59 (2002) 176-183.

DOI: 10.1002/jbm.1231

Google Scholar

[8] Fletcher, G., Rossetto, F., Turnbull, J., Nieboer, E., Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environ Health Perspect 102 (1994) 69-79.

DOI: 10.2307/3431766

Google Scholar

[9] Rossi, S., Deorian, F., Pegoretti, A., D'Orazio, D., Gialanella, S., Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf Coat Technol 202 (2008) 2214-2222.

DOI: 10.1016/j.surfcoat.2007.09.013

Google Scholar

[10] Rho, J.Y., Tsui, T., Pharr, G., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18 (1997) 1325 -1330.

DOI: 10.1016/s0142-9612(97)00073-2

Google Scholar

[11] Huiskes, R., Weinans, H., Rietbergen, B., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 274 (1992) 124-134.

DOI: 10.1097/00003086-199201000-00014

Google Scholar

[12] Niinomi, M., Mechanical properties of biomedical titanium alloys. Mater Sci Eng, A 243 (1998) 231 - 236.

Google Scholar

[13] Katti, K.S., Biomaterials in total joint replacement. Colloids Surf, B 39 (2004) 133 - 142.

Google Scholar

[14] Matsuno, H., Yokoyama, A., Watari, F., Uo, M., Kawasaki, T., Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22 (2001) 1253-1262.

DOI: 10.1016/s0142-9612(00)00275-1

Google Scholar

[15] Eisenbarth, E., Velten., D., Mller, M., Thull, R., Breme, J. Biocompatibility of [beta]-stabilizing elements of titanium alloys. Biomaterials 25 (2004) 5705-5713.

DOI: 10.1016/j.biomaterials.2004.01.021

Google Scholar

[16] Scarano, A., Carlo, F., Quaranta, M., Piattelli, A., Bone response to zirconia ceramic implants: An experimental study in rabbits. J Oral Implantol 29 (2003) 8-12.

DOI: 10.1563/1548-1336(2003)029<0008:brtzci>2.3.co;2

Google Scholar

[17] Abdel-Hady, M., Hinoshita, K., Morinaga, M. General approach to phase stability and elastic properties of beta-type Ti-alloys using electronic parameters. Scr Mater 55 (2006) 477-480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[18] Song, Y., Xu, D.S., Yang, R., Li, D., Wu, W.T., Guo, Z.X., Theoretical study of the effects of alloying elements on the strength and modulus of [beta]-type bio-titanium alloys. Mater Sci Eng, A 260 (1999) 269-274.

DOI: 10.1016/s0921-5093(98)00886-7

Google Scholar

[19] Niinomi, M., Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed 1 (2008) 30-42.

Google Scholar

[20] Laheurte, P., Prima, F., Eberhardt, A., Gloriant, T., Wary, M., Patoor, E., Mechanical properties of low modulus titanium alloys designed from the electronic approach. J Mech Behav Biomed 3 (2010) 565-573.

DOI: 10.1016/j.jmbbm.2010.07.001

Google Scholar

[21] Gibson, L., Ashby, M., Cellular Solids: Structure and Properties. 2nd Ed., Cambridge University Press, (1997).

Google Scholar

[22] Ryan, G., Pandit, A., Apatsidis, D., Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006) 2651-2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[23] Wolfarth, D., Ducheyne, P., Effect of a change in interfacial geometry on the fatigue strength of porous-coated ti-6al-4v. J Biomed Mater Res 28 (1994) 417-425.

DOI: 10.1002/jbm.820280403

Google Scholar

[24] Donachie, M., Titanium: A Technical Guide. 2nd ed. ASM International, (2000).

Google Scholar

[25] Dunand, D.C., Processing of titanium foams. Adv Eng Mater 6 (2004) 369-376.

Google Scholar

[26] Patil, K.C., Aruna, S.T., Ekambaram, S., Combustion synthesis. Curr Opin Solid St M 2 (1997) 158-165.

Google Scholar

[27] Oh, I.H., Nomura, N., Masahashi, N., Hanada, S., Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 49 (2003) 1197-1202.

DOI: 10.1016/j.scriptamat.2003.08.018

Google Scholar

[28] Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., et al. Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J Mater Sci: Mater Med 12 (2001) 225-231.

DOI: 10.4028/www.scientific.net/msf.308-311.374

Google Scholar

[29] Davis, N.G., Teisen, J., Schuh, C., Dunand, D.C., Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J Mater Res 16 (2001) 1508-1519.

DOI: 10.1557/jmr.2001.0210

Google Scholar

[30] Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46 (2001) 559- 632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[31] Wen, C.E., Yamada, Y., Shimojima, K., Chino, Y., Hosokawa, H., Mabuchi, M., Novel titanium foam for bone tissue engineering. J Mater Res 17 (2002) 2633-2639.

DOI: 10.1557/jmr.2002.0382

Google Scholar

[32] Laptev, A., Bram, M., Buchkremer, H.P., Stöver, D., Study of production route for titanium parts combining very high porosity and complex shape. Powder Metall 47 (2004) 85-92.

DOI: 10.1179/003258904225015536

Google Scholar

[33] Kieback, B., Neubrand, A., Riedel, H., Processing techniques for functionally graded materials. Mater Sci Eng, A 362 (2003) 81- 106.

DOI: 10.1016/s0921-5093(03)00578-1

Google Scholar

[34] Imwinkelried, T., Mechanical properties of open-pore titanium foam. J Biomed Mater Res A 81A (2007) 964-970.

DOI: 10.1002/jbm.a.31118

Google Scholar

[35] Ryan, G.E., Pandit, A.S., Apatsidis, D.P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29 (2008) 3625-3635.

DOI: 10.1016/j.biomaterials.2008.05.032

Google Scholar

[36] Stamp, R., Fox, P., ONeill, W., Jones, E., Sutcliffe, C., The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Sci: Mater Med 20 (2009) 1839-1848.

DOI: 10.1007/s10856-009-3763-8

Google Scholar

[37] Berry, E., Brown, J., Connell, M., Craven, C., Efford, N., Radjenovic, A., et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys 19 (1997) 90-96.

DOI: 10.1016/s1350-4533(96)00039-2

Google Scholar

[38] Cachinho, S., Correia, R., Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J Mater Sci: Mater Med 19 (2008) 451-457.

DOI: 10.1007/s10856-006-0052-7

Google Scholar

[39] Li, J.P., de Groot, K., Layrolle, P., Improvement of porous Ti with thicker struts. Key Eng Mater 240-242 (2003) 547-550.

DOI: 10.4028/www.scientific.net/kem.240-242.547

Google Scholar