Enhanced Sintering of Pre-Alloyed Binary TiAl Powder by a Small Addition of Iron

Article Preview

Abstract:

TiAl alloy powder is difficult to sinter unless assisted with pressure and/or pulsed current. This paper investigates the effect of a small addition of iron on the sintering behaviour of γ-TiAl alloy powder at 1350 °C in vacuum. Thermodynamic calculations using Thermo-Calc and the Ti-alloy database TTTI3 predict that iron is a potential sintering aid for TiAl powder. The relative sintered density (RSD) increased with increasing Fe content and peaked at an addition of 2at.%Fe, at which the RSD increased from ~ 60% theoretical density (TD) without iron to ~ 97%TD. The enhanced densification is attributed to liquid formation induced by iron based on both thermodynamic predictions and differential scanning calorimetry (DSC) analysis. The as-sintered microstructures and phase constituents were analysed by scanning electron microscopy (SEM) equipped with an energy dispersive spectroscopy (EDS) microanalysis system and X-ray diffraction (XRD) analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Yamaguchi, H. Inui and K. Ito, High-temperature structural intermetallics, Acta Mater. 48 (2000) 307-322.

DOI: 10.1016/s1359-6454(99)00301-8

Google Scholar

[2] W.J. Zhang, B.V. Reddy, S.C. Deevi, Physical properties of TiAl-base alloys, Scripta Mater. 45 ( 2001) 645-651.

DOI: 10.1016/s1359-6462(01)01075-2

Google Scholar

[3] Y.W. Kim, Intermetallic alloys based on gamma titanium aluminide, JOM 41 (1989) 24-30.

DOI: 10.1007/bf03220267

Google Scholar

[4] T. Noda, Application of cast gamma TiAl for automobiles, Intermetallics 6 (1998) 709-713.

DOI: 10.1016/s0966-9795(98)00060-0

Google Scholar

[5] Y.G. Nakagawa, S. Yokoshima, K. Mastuda, Development of Castable TiAl Alloy for Turbine Components, Mater. Sci. Engng A 153 (1992) 722-725.

DOI: 10.1016/b978-1-85166-822-9.50114-x

Google Scholar

[6] V. Imayev, R. Imayev, T. Khismatullin, T. Oleneva, V. Gühter, H. J. Fecht, Microstructure and processing ability of β-solidifying TNM-based γ-TiAl alloys,  Mater. Sci. Forum 638-642 (2010) 235-240.

DOI: 10.4028/www.scientific.net/msf.638-642.235

Google Scholar

[7] D. Hu, X. Wu, Tensile ductility of cast TiAl alloys, Mater. Sci. Forum 638-642 (2010) 1336-1341.

DOI: 10.4028/www.scientific.net/msf.638-642.1336

Google Scholar

[8] J.P. Kuang, R.A. Harding, J. Campbell, Microstructures and properties of investment castings of γ-titanium aluminide, Mater. Sci. Eng. A 329-331 (2002) 31-37.

DOI: 10.1016/s0921-5093(01)01539-8

Google Scholar

[9] M. Qian, Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication, Int. J. Powder Metall. 46 (2010) 29-44.

Google Scholar

[10] W. Eisen, Powder Metallurgy Superalloys, Materials World, 4 (1996) 22-24.

Google Scholar

[11] L. Zhao, J. Beddoes, P. Au, W. Wallace, Evaluations of P/M gamma titanium aluminides, Adv. Perform. Mater. 4 (1997) 421-434.

Google Scholar

[12] R. Gerling, H. Clemens, and F.P. Schimansky, Power metallurgical processing of intermetallic gamma titanium aluminides, Adv. Eng. Mater. 6 (2004) 23-38.

DOI: 10.1002/adem.200310559

Google Scholar

[13] J.H. Moll, B.J. McTiernan, PM TiAl alloys: the sky's the limit, Met. Powder. Rep. 55 (2000) 18-22.

DOI: 10.1016/s0026-0657(00)87337-3

Google Scholar

[14] H.M. Zhang, X.B. He, X.H. Qu, L.M. Zhao, Microstructure and mechanical properties of high Nb containing TiAl alloy parts fabricated by metal injection molding, Mater. Sci. Eng. A 526 (2009) 31-37.

DOI: 10.1016/j.msea.2009.07.003

Google Scholar

[15] W. Limberg, T. Ebel, F.P. Schimansky, R. Hoppe, M. Oehring, F. Pyczak, Metal Injection Moulding (MIM) of Titanium Aluminides, in: Euro PM2009 Proceedings, Shrewsbury, European Powder Metallurgy Association, 47–52 (Euro PM2009 Congress & Exhibition, Copenhagen, 12–14 October 2009).

DOI: 10.4028/www.scientific.net/kem.520.153

Google Scholar

[16] R. Gerling, F.P. Schimansky, Prospects for metal injection moulding using a gamma titanium aluminide based alloy powder, Mater. Sci. Eng. A 329-331 (2002) 45-49.

DOI: 10.1016/s0921-5093(01)01544-1

Google Scholar

[17] Y. Shida, H. Anada, The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air, Oxid. Met. 45 (1996) 197-219.

DOI: 10.1007/bf01046826

Google Scholar

[18] D.B. Lee, Effect of Fe on the high temperature oxidation of TiAl alloys, Met. Mater. Int. 11 (2005) 313-317.

DOI: 10.1007/bf03027335

Google Scholar

[19] N. Durlu, O.T. Inal, Study on TiAl2-Based Ternary (Iron or Nickel) Titanium Aluminides, J. Mater. Sci. 27 (1992) 1175-1178.

DOI: 10.1007/bf01142016

Google Scholar

[20] R. Ducher, B. Viguier, J. Lacaze, Modification of the crystallographic structure of gamma TiAl alloyed with iron, Scripta. Mater. 47 (2002) 307-313.

DOI: 10.1016/s1359-6462(02)00145-8

Google Scholar

[21] S. Nishikiori, K. Matsuda, Improvements of room temperature tensile properties in cast TiAl-Fe-V-B alloy by microstructural control, J. Iron Steel Inst. Jpn. 84 (1998) 369-374.

DOI: 10.2355/tetsutohagane1955.84.5_369

Google Scholar

[22] S. Nishikiori, S. Masaki, Development and application of advanced materials, cast gamma titanium aluminides and silicon carbide matrix composites for improved performance aero-space engines, J. Jpn. Inst. Met. 64(2000) 992-998.

DOI: 10.2320/jinstmet1952.64.11_992

Google Scholar

[23] S. Nishikiori, K. Matsuda, Y. G. Nakagawa, Microstructural effects on tensile properties of cast TiAl-Fe-V-B alloy, Mater. Sci. Eng. A 239-240 (1997) 592-599.

DOI: 10.1016/s0921-5093(97)00635-7

Google Scholar

[24] F.H. Froes, C. Suryanarayana, D. Eliezer, Synthesis, properties and applications of Titanium aluminides, J. Mater. Sci. 27 (1992) 5113-5140.

DOI: 10.1007/bf02403806

Google Scholar

[25] A. Tokar, A. Berner, L. Levin, The origin of a new phase observed during quenching of a TiAl-2Fe alloy, Mater. Sci. Eng. A 308 (2001) 13-18.

DOI: 10.1016/s0921-5093(00)02038-4

Google Scholar