[1]
M. Yamaguchi, H. Inui and K. Ito, High-temperature structural intermetallics, Acta Mater. 48 (2000) 307-322.
DOI: 10.1016/s1359-6454(99)00301-8
Google Scholar
[2]
W.J. Zhang, B.V. Reddy, S.C. Deevi, Physical properties of TiAl-base alloys, Scripta Mater. 45 ( 2001) 645-651.
DOI: 10.1016/s1359-6462(01)01075-2
Google Scholar
[3]
Y.W. Kim, Intermetallic alloys based on gamma titanium aluminide, JOM 41 (1989) 24-30.
DOI: 10.1007/bf03220267
Google Scholar
[4]
T. Noda, Application of cast gamma TiAl for automobiles, Intermetallics 6 (1998) 709-713.
DOI: 10.1016/s0966-9795(98)00060-0
Google Scholar
[5]
Y.G. Nakagawa, S. Yokoshima, K. Mastuda, Development of Castable TiAl Alloy for Turbine Components, Mater. Sci. Engng A 153 (1992) 722-725.
DOI: 10.1016/b978-1-85166-822-9.50114-x
Google Scholar
[6]
V. Imayev, R. Imayev, T. Khismatullin, T. Oleneva, V. Gühter, H. J. Fecht, Microstructure and processing ability of β-solidifying TNM-based γ-TiAl alloys, Mater. Sci. Forum 638-642 (2010) 235-240.
DOI: 10.4028/www.scientific.net/msf.638-642.235
Google Scholar
[7]
D. Hu, X. Wu, Tensile ductility of cast TiAl alloys, Mater. Sci. Forum 638-642 (2010) 1336-1341.
DOI: 10.4028/www.scientific.net/msf.638-642.1336
Google Scholar
[8]
J.P. Kuang, R.A. Harding, J. Campbell, Microstructures and properties of investment castings of γ-titanium aluminide, Mater. Sci. Eng. A 329-331 (2002) 31-37.
DOI: 10.1016/s0921-5093(01)01539-8
Google Scholar
[9]
M. Qian, Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication, Int. J. Powder Metall. 46 (2010) 29-44.
Google Scholar
[10]
W. Eisen, Powder Metallurgy Superalloys, Materials World, 4 (1996) 22-24.
Google Scholar
[11]
L. Zhao, J. Beddoes, P. Au, W. Wallace, Evaluations of P/M gamma titanium aluminides, Adv. Perform. Mater. 4 (1997) 421-434.
Google Scholar
[12]
R. Gerling, H. Clemens, and F.P. Schimansky, Power metallurgical processing of intermetallic gamma titanium aluminides, Adv. Eng. Mater. 6 (2004) 23-38.
DOI: 10.1002/adem.200310559
Google Scholar
[13]
J.H. Moll, B.J. McTiernan, PM TiAl alloys: the sky's the limit, Met. Powder. Rep. 55 (2000) 18-22.
DOI: 10.1016/s0026-0657(00)87337-3
Google Scholar
[14]
H.M. Zhang, X.B. He, X.H. Qu, L.M. Zhao, Microstructure and mechanical properties of high Nb containing TiAl alloy parts fabricated by metal injection molding, Mater. Sci. Eng. A 526 (2009) 31-37.
DOI: 10.1016/j.msea.2009.07.003
Google Scholar
[15]
W. Limberg, T. Ebel, F.P. Schimansky, R. Hoppe, M. Oehring, F. Pyczak, Metal Injection Moulding (MIM) of Titanium Aluminides, in: Euro PM2009 Proceedings, Shrewsbury, European Powder Metallurgy Association, 47–52 (Euro PM2009 Congress & Exhibition, Copenhagen, 12–14 October 2009).
DOI: 10.4028/www.scientific.net/kem.520.153
Google Scholar
[16]
R. Gerling, F.P. Schimansky, Prospects for metal injection moulding using a gamma titanium aluminide based alloy powder, Mater. Sci. Eng. A 329-331 (2002) 45-49.
DOI: 10.1016/s0921-5093(01)01544-1
Google Scholar
[17]
Y. Shida, H. Anada, The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air, Oxid. Met. 45 (1996) 197-219.
DOI: 10.1007/bf01046826
Google Scholar
[18]
D.B. Lee, Effect of Fe on the high temperature oxidation of TiAl alloys, Met. Mater. Int. 11 (2005) 313-317.
DOI: 10.1007/bf03027335
Google Scholar
[19]
N. Durlu, O.T. Inal, Study on TiAl2-Based Ternary (Iron or Nickel) Titanium Aluminides, J. Mater. Sci. 27 (1992) 1175-1178.
DOI: 10.1007/bf01142016
Google Scholar
[20]
R. Ducher, B. Viguier, J. Lacaze, Modification of the crystallographic structure of gamma TiAl alloyed with iron, Scripta. Mater. 47 (2002) 307-313.
DOI: 10.1016/s1359-6462(02)00145-8
Google Scholar
[21]
S. Nishikiori, K. Matsuda, Improvements of room temperature tensile properties in cast TiAl-Fe-V-B alloy by microstructural control, J. Iron Steel Inst. Jpn. 84 (1998) 369-374.
DOI: 10.2355/tetsutohagane1955.84.5_369
Google Scholar
[22]
S. Nishikiori, S. Masaki, Development and application of advanced materials, cast gamma titanium aluminides and silicon carbide matrix composites for improved performance aero-space engines, J. Jpn. Inst. Met. 64(2000) 992-998.
DOI: 10.2320/jinstmet1952.64.11_992
Google Scholar
[23]
S. Nishikiori, K. Matsuda, Y. G. Nakagawa, Microstructural effects on tensile properties of cast TiAl-Fe-V-B alloy, Mater. Sci. Eng. A 239-240 (1997) 592-599.
DOI: 10.1016/s0921-5093(97)00635-7
Google Scholar
[24]
F.H. Froes, C. Suryanarayana, D. Eliezer, Synthesis, properties and applications of Titanium aluminides, J. Mater. Sci. 27 (1992) 5113-5140.
DOI: 10.1007/bf02403806
Google Scholar
[25]
A. Tokar, A. Berner, L. Levin, The origin of a new phase observed during quenching of a TiAl-2Fe alloy, Mater. Sci. Eng. A 308 (2001) 13-18.
DOI: 10.1016/s0921-5093(00)02038-4
Google Scholar