Fundamental Reactor Design Considerations for Reducing TiCl4 Metallothermically to Produce Ti Powder

Article Preview

Abstract:

Continuous metallothermic reduction of TiCl4 in a molten salt medium is affected by the low solubility of TiCl4 in appropriate molten salts, the solubilities of suitable reducing metals in the salts and the vapour pressures of the different chemicals in the system. The purpose of the study is to compare quantitatively how the physical properties of the different suitable reducing agents will affect the development and design of a process to continuously produce titanium powder from TiCl4 in molten salt. In the study Li, Na, Mg and Ca are compared with respect to the mass transfer rate requirements of TiCl4 absorption and metal dissolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-110

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.D. McQuillan and M.K. McQuillan, Metallurgy of the Rarer Metals No. 4, Titanium, Butterworths Scientific Publications, London, (1956).

DOI: 10.1002/ange.19590711923

Google Scholar

[2] P.C. Turner, A. Hartman, J.S. Hansen, S.J. Gerdemann, Low cost titanium – Myth or reality, http: /www. osti. gov/bridge/servlets/purl/899609-PMSrtc/899609. PDF, DOE/ARC-2001-086.

Google Scholar

[3] D.S. van Vuuren, A critical evaluation of processes to produce primary titanium, J. SAIMM. 109 (2009) 455-461.

Google Scholar

[4] W.H. Keller and I.S. Zonis, Method of producing titanium, US Patent 2, 846, 303, 5 Aug. (1958).

Google Scholar

[5] C.M. Olson, Method of producing titanium metal, US Patent 2, 839, 385, 17 June1958.

Google Scholar

[6] J. Smolinksi, J.C. Hannam and A.L. Leach, Experiments to establish conditions for the continuous reduction of titanium tetrachloride to the metal by sodium, J. Appl. Chem. 8 (1958) 375-386.

DOI: 10.1002/jctb.5010080606

Google Scholar

[7] J.C. White and L.L. Oden, Continuous production of granular or powder Ti, Zr and Hf or their alloy powders, US Patent 5, 259, 862, 9 Nov. (1993).

Google Scholar

[8] Y. Okura, Titanium sponge production technology, Titanium '95: Science and Technology, Proceedings of the 8th World Conference on Titanium, Birmingham, UK, 1995, 1427-1437.

Google Scholar

[9] G.R.B. Elliot, Continuous production of Ti, U and other metals and growth of metallic needles, US Patent 6, 210, 461, 3 Apr. (2001).

Google Scholar

[10] R.O. Suzuki, T.N. Harada, T. Matsunaga, T.N. Deura and K. Ono, Titanium powder prepared by magnesiothermic reduction of Ti2+ in molten salt, Metallurgical and Materials Trans. 30B (1999) 403-410.

DOI: 10.1007/s11663-999-0072-z

Google Scholar

[11] A. Fuwa, and S. Takaya, Producing titanium by reducing TiCl2-MgCl2 mixed salt with magnesium in the molten state, JOM Oct. (2005) 56-60.

DOI: 10.1007/s11837-005-0153-7

Google Scholar

[12] T. Naito, R.O. Suzuki, and Y. Tomii, Reduction of TiCl4 gas by Ca dissolved in molten calcium chloride, Ti-2007 Science and Technology, The Japan Institute of Metals (2007) 103-106.

Google Scholar

[13] J.C. Withers, Novel processing to produce Ti and Ti alloy powders on a continuous basis, Titanium 2009 Conference, The International Titanium Association, Kona Hawaii, 13-16 September (2009).

Google Scholar

[14] G. Wellwood, Low cost titanium powder processes to facilitate near net shape manufacture, The 22nd Annual Conference of the International Titanium Association, San Diego, October 1-3, (2006).

Google Scholar

[15] D.R. Armstrong, S.S. Borys and R.P. Anderson, Method of making metals and other elements, US Patent 5, 779, 761, 14 Jul., (1998).

Google Scholar

[16] D.A. Hansen and S.J. Gerdemann, Producing titanium powder by continuous vapor-phase reduction, JOM Nov. (1998) 56-58.

DOI: 10.1007/s11837-998-0289-3

Google Scholar

[17] D.S. van Vuuren, S.O. Oosthuizen and M.D. Heydenrych, Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products, J. SAIMM. 111 (2011) 141-148.

Google Scholar

[18] J. Tanaka, T.H. Okabe, N. Sakai, T. Fujitani, K. Takahashi, N. Michishita, Y. Umetsu and K. Nikami, New titanium production process with molten salt mediator, J. Japan Inst. Metals, 65(8) (2001) 659-667.

DOI: 10.2320/jinstmet1952.65.8_659

Google Scholar

[19] G.J. Janz, Thermodynamic and Transport Properties of Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data, A Chem. Society, A Inst. Phys and National Bureau of Standard, J. of Phys. and Chem. Reference Data, Volume 17, 1988, Supplement No. 2.

Google Scholar

[20] C.J. Smithnells and E.A. Brandes, Metals Reference Book, fifth ed., Butterworths, London & Boston, (1976).

Google Scholar

[21] W.G.B. Mandersloot and K.J. Scott, Rheology of suspensions, SA Journal of Chem. Eng. 2(2) (1990) 53-69.

Google Scholar

[22] Outotec Research Oy, HSC Chemistry 6. 1, (2007).

Google Scholar

[23] G. -P. Bienvenu, B. Chaleat, D. Dubruque, J. -C. Girardot and P. Vaxelaire, Production of metal powders by reduction of metal salts in fused bath, US Patent 4, 820, 339, 11 April (1988).

Google Scholar

[24] NIST and American Ceramic Society, Phase Diagrams for Ceramists.

Google Scholar

[25] F. Seon and P. Nataf, Production of metals by metallothermia, US Patent 4, 725, 312, 16 Feb. (1988).

Google Scholar

[26] V.G. Pangarkar, A.A. Yawalkar, M.M. Sharma and A.A.C.M. Beenackers, Particle-liquid mass transfer coefficient in two-/three-phase stirred tank reactors, Ind. Eng. Chem. Res. 41 (2002) 4141-4167.

DOI: 10.1021/ie010933j

Google Scholar

[27] P. Harriott, Mass transfer to particles. Part 1. Suspended in agitated tanks, AIChE J. 8(1) (1962) 93-102.

DOI: 10.1002/aic.690080122

Google Scholar

[28] J. O'M. Bockris and G.W. Hooper, Self-diffusion in molten alkali halides, Discuss. Faraday Soc. 32 (1961) 218-236.

DOI: 10.1039/df9613200218

Google Scholar

[29] C.R. Wilke and P. Chang, quoted by R.H. Perry, D.W. Green and J.O. Maloney, Perry's Chemical Engineers' Handbook, 7th Ed, McGraw-Hill Book Company (1997) 5-51.

Google Scholar

[30] L.A. Tsiovkina and M.V. Smirnov, The influence of the nature of the cations and anions on the solubility of titanium tetrachloride in salt melts, Russian J. Inorganic Chem., 4(1) (1959) 65-67.

Google Scholar

[31] V.S. Maksimov and M.V. Smirnov, Solubility of titanium tetrachloride in molten sodium chloride and in an equimolar mixture of sodium and potassium chlorides, Electrochem. of Molten and Solid Electrolytes, 6 (1968) 30-36.

Google Scholar

[32] M.V. Smirnov, V.S. Maksimov, Solubility of molten titanium tetrachloride in molten magnesium chloride, Electrochem. of Molten and Solid Electrolytes, 7 (1969) 37-41.

Google Scholar

[33] P. Ehrlich and R. Schmitt, Über die systeme LiCl/TiCl2, RbCl/TiCl2 und Cs/TiCl2, Zeitschrift für Anorg. und Allg. Chem. 308 (1961) 91-97.

DOI: 10.1002/zaac.19613080111

Google Scholar

[34] K. Komarek and P Herasymenko, Equilibria between titanium metal and solutions of titanium dichloride in fused sodium chloride, J. Electrochem. Soc. 104(4) (1958) 216-219.

DOI: 10.1149/1.2428803

Google Scholar

[35] K. Komarek and P Herasymenko, Equilibria between titanium metal and solutions of titanium dichloride in fused magnesium chloride, J. Electrochem. Soc. 105(4) (1958) 210-215.

DOI: 10.1149/1.2428802

Google Scholar

[36] O. Takeda and T.H. Okabe, Fundamental study on synthesis and enrichment of titanium subchloride, Journal of Alloys and Compounds 457 (2008) 376–383.

DOI: 10.1016/j.jallcom.2007.02.128

Google Scholar

[37] S. Hatta, quoted by P.V. Danckwerts, Gas-Liquid Reactions, McGraw-Hill Book Company, (1970) 111-112.

Google Scholar

[38] K. Matsumoto, H. Numata, S. Haruyama and I. Ohno, Rotating disk electrode of a Ti3+/Ti electrode in LiCl-KCl eutectic and NaCl-MgCl2-KCl melt, Materials Trans., JIM 40(12) (1999) 1429-1435.

DOI: 10.2320/matertrans1989.40.1429

Google Scholar