[1]
A.D. McQuillan and M.K. McQuillan, Metallurgy of the Rarer Metals No. 4, Titanium, Butterworths Scientific Publications, London, (1956).
DOI: 10.1002/ange.19590711923
Google Scholar
[2]
P.C. Turner, A. Hartman, J.S. Hansen, S.J. Gerdemann, Low cost titanium – Myth or reality, http: /www. osti. gov/bridge/servlets/purl/899609-PMSrtc/899609. PDF, DOE/ARC-2001-086.
Google Scholar
[3]
D.S. van Vuuren, A critical evaluation of processes to produce primary titanium, J. SAIMM. 109 (2009) 455-461.
Google Scholar
[4]
W.H. Keller and I.S. Zonis, Method of producing titanium, US Patent 2, 846, 303, 5 Aug. (1958).
Google Scholar
[5]
C.M. Olson, Method of producing titanium metal, US Patent 2, 839, 385, 17 June1958.
Google Scholar
[6]
J. Smolinksi, J.C. Hannam and A.L. Leach, Experiments to establish conditions for the continuous reduction of titanium tetrachloride to the metal by sodium, J. Appl. Chem. 8 (1958) 375-386.
DOI: 10.1002/jctb.5010080606
Google Scholar
[7]
J.C. White and L.L. Oden, Continuous production of granular or powder Ti, Zr and Hf or their alloy powders, US Patent 5, 259, 862, 9 Nov. (1993).
Google Scholar
[8]
Y. Okura, Titanium sponge production technology, Titanium '95: Science and Technology, Proceedings of the 8th World Conference on Titanium, Birmingham, UK, 1995, 1427-1437.
Google Scholar
[9]
G.R.B. Elliot, Continuous production of Ti, U and other metals and growth of metallic needles, US Patent 6, 210, 461, 3 Apr. (2001).
Google Scholar
[10]
R.O. Suzuki, T.N. Harada, T. Matsunaga, T.N. Deura and K. Ono, Titanium powder prepared by magnesiothermic reduction of Ti2+ in molten salt, Metallurgical and Materials Trans. 30B (1999) 403-410.
DOI: 10.1007/s11663-999-0072-z
Google Scholar
[11]
A. Fuwa, and S. Takaya, Producing titanium by reducing TiCl2-MgCl2 mixed salt with magnesium in the molten state, JOM Oct. (2005) 56-60.
DOI: 10.1007/s11837-005-0153-7
Google Scholar
[12]
T. Naito, R.O. Suzuki, and Y. Tomii, Reduction of TiCl4 gas by Ca dissolved in molten calcium chloride, Ti-2007 Science and Technology, The Japan Institute of Metals (2007) 103-106.
Google Scholar
[13]
J.C. Withers, Novel processing to produce Ti and Ti alloy powders on a continuous basis, Titanium 2009 Conference, The International Titanium Association, Kona Hawaii, 13-16 September (2009).
Google Scholar
[14]
G. Wellwood, Low cost titanium powder processes to facilitate near net shape manufacture, The 22nd Annual Conference of the International Titanium Association, San Diego, October 1-3, (2006).
Google Scholar
[15]
D.R. Armstrong, S.S. Borys and R.P. Anderson, Method of making metals and other elements, US Patent 5, 779, 761, 14 Jul., (1998).
Google Scholar
[16]
D.A. Hansen and S.J. Gerdemann, Producing titanium powder by continuous vapor-phase reduction, JOM Nov. (1998) 56-58.
DOI: 10.1007/s11837-998-0289-3
Google Scholar
[17]
D.S. van Vuuren, S.O. Oosthuizen and M.D. Heydenrych, Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products, J. SAIMM. 111 (2011) 141-148.
Google Scholar
[18]
J. Tanaka, T.H. Okabe, N. Sakai, T. Fujitani, K. Takahashi, N. Michishita, Y. Umetsu and K. Nikami, New titanium production process with molten salt mediator, J. Japan Inst. Metals, 65(8) (2001) 659-667.
DOI: 10.2320/jinstmet1952.65.8_659
Google Scholar
[19]
G.J. Janz, Thermodynamic and Transport Properties of Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data, A Chem. Society, A Inst. Phys and National Bureau of Standard, J. of Phys. and Chem. Reference Data, Volume 17, 1988, Supplement No. 2.
Google Scholar
[20]
C.J. Smithnells and E.A. Brandes, Metals Reference Book, fifth ed., Butterworths, London & Boston, (1976).
Google Scholar
[21]
W.G.B. Mandersloot and K.J. Scott, Rheology of suspensions, SA Journal of Chem. Eng. 2(2) (1990) 53-69.
Google Scholar
[22]
Outotec Research Oy, HSC Chemistry 6. 1, (2007).
Google Scholar
[23]
G. -P. Bienvenu, B. Chaleat, D. Dubruque, J. -C. Girardot and P. Vaxelaire, Production of metal powders by reduction of metal salts in fused bath, US Patent 4, 820, 339, 11 April (1988).
Google Scholar
[24]
NIST and American Ceramic Society, Phase Diagrams for Ceramists.
Google Scholar
[25]
F. Seon and P. Nataf, Production of metals by metallothermia, US Patent 4, 725, 312, 16 Feb. (1988).
Google Scholar
[26]
V.G. Pangarkar, A.A. Yawalkar, M.M. Sharma and A.A.C.M. Beenackers, Particle-liquid mass transfer coefficient in two-/three-phase stirred tank reactors, Ind. Eng. Chem. Res. 41 (2002) 4141-4167.
DOI: 10.1021/ie010933j
Google Scholar
[27]
P. Harriott, Mass transfer to particles. Part 1. Suspended in agitated tanks, AIChE J. 8(1) (1962) 93-102.
DOI: 10.1002/aic.690080122
Google Scholar
[28]
J. O'M. Bockris and G.W. Hooper, Self-diffusion in molten alkali halides, Discuss. Faraday Soc. 32 (1961) 218-236.
DOI: 10.1039/df9613200218
Google Scholar
[29]
C.R. Wilke and P. Chang, quoted by R.H. Perry, D.W. Green and J.O. Maloney, Perry's Chemical Engineers' Handbook, 7th Ed, McGraw-Hill Book Company (1997) 5-51.
Google Scholar
[30]
L.A. Tsiovkina and M.V. Smirnov, The influence of the nature of the cations and anions on the solubility of titanium tetrachloride in salt melts, Russian J. Inorganic Chem., 4(1) (1959) 65-67.
Google Scholar
[31]
V.S. Maksimov and M.V. Smirnov, Solubility of titanium tetrachloride in molten sodium chloride and in an equimolar mixture of sodium and potassium chlorides, Electrochem. of Molten and Solid Electrolytes, 6 (1968) 30-36.
Google Scholar
[32]
M.V. Smirnov, V.S. Maksimov, Solubility of molten titanium tetrachloride in molten magnesium chloride, Electrochem. of Molten and Solid Electrolytes, 7 (1969) 37-41.
Google Scholar
[33]
P. Ehrlich and R. Schmitt, Über die systeme LiCl/TiCl2, RbCl/TiCl2 und Cs/TiCl2, Zeitschrift für Anorg. und Allg. Chem. 308 (1961) 91-97.
DOI: 10.1002/zaac.19613080111
Google Scholar
[34]
K. Komarek and P Herasymenko, Equilibria between titanium metal and solutions of titanium dichloride in fused sodium chloride, J. Electrochem. Soc. 104(4) (1958) 216-219.
DOI: 10.1149/1.2428803
Google Scholar
[35]
K. Komarek and P Herasymenko, Equilibria between titanium metal and solutions of titanium dichloride in fused magnesium chloride, J. Electrochem. Soc. 105(4) (1958) 210-215.
DOI: 10.1149/1.2428802
Google Scholar
[36]
O. Takeda and T.H. Okabe, Fundamental study on synthesis and enrichment of titanium subchloride, Journal of Alloys and Compounds 457 (2008) 376–383.
DOI: 10.1016/j.jallcom.2007.02.128
Google Scholar
[37]
S. Hatta, quoted by P.V. Danckwerts, Gas-Liquid Reactions, McGraw-Hill Book Company, (1970) 111-112.
Google Scholar
[38]
K. Matsumoto, H. Numata, S. Haruyama and I. Ohno, Rotating disk electrode of a Ti3+/Ti electrode in LiCl-KCl eutectic and NaCl-MgCl2-KCl melt, Materials Trans., JIM 40(12) (1999) 1429-1435.
DOI: 10.2320/matertrans1989.40.1429
Google Scholar