[1]
M. Yoshinara, and K. Miura, Effect of Nb on oxidation behavior of TiAl, Intermetallics, 3(1995) 357-363.
Google Scholar
[2]
J.D.H. Paul, F. Appel, and R. Wagner, The compression behavior of niobium alloyed γ-titanium aluminides, Acta Mater., 46 (1998) 1075-1085.
DOI: 10.1016/s1359-6454(97)00332-7
Google Scholar
[3]
G.L. Chen, J.G. Wang, X.D. Ni, J.P. Lin, and Y.L. Wang, A new intermetallic compound in TiAl+Nb composition area of the Ti-Al-Nb ternary system, Intermetallics, 13 (2005) 329-336.
DOI: 10.1016/j.intermet.2004.07.006
Google Scholar
[4]
M. Thomas, J.L. Raviart, and F. Popoff, Cast and PM processing development in gamma aluminides, Intermetallics, 13 (2005) 944-951.
DOI: 10.1016/j.intermet.2004.12.010
Google Scholar
[5]
L.M. Hsiung, and T.G. Nieh, Microstructures and properties of powder metallurgy TiAl alloy, Mater. Sci. Eng., A. 364, (2004)1-10.
Google Scholar
[6]
N. Midoux, P. Hosek, L. Pailleres, and J.R. Authelin, Micronization of pharmaceutical substances in a spiral jet mill, Powder Technol., 104(1999)113-120.
DOI: 10.1016/s0032-5910(99)00052-2
Google Scholar
[7]
M. Mebtoul, J.F. Large, and P. Guigon, High velocity impact of particles on a target – an experimental study, Int. J. Miner. Process., 44-45(1996)77-91.
DOI: 10.1016/b978-0-444-82440-0.50010-9
Google Scholar
[8]
F. Peng, Y.M. Wang, and Z. D. Pan, Breakage behavior of silicon carbide particles in a fluidized bed opposed jet mill, J. Chin. Ceramic Soc., 38 (2010)745-753.
Google Scholar
[9]
P. Samayamutthirian, M.A. Khairun Azizi, H. Hashim, H. Hussin, and S.H. Syed Fuad, Effect of operational parameters on the breakage mechanism of silica in a jet mill, Miner. Eng. 21(2008)380-388.
DOI: 10.1016/j.mineng.2007.10.011
Google Scholar
[10]
O. De Vegt, H. Vromans, J. Den Toonder, and K. Van Der Voort Maarschalk, Influence of flaws and crystal properties on particle fracture in a jet mill, Powder Technol., 191(2009)72-77.
DOI: 10.1016/j.powtec.2008.09.014
Google Scholar
[11]
J.H. Seo, J.S. Kim, M.Y. Lee, W.T. Ju, and I.T. Nam, Direct synthesis of nano-sized glass powders with spherical shape by RF (radio frequency) thermal plasma, Thin Solid Films, 519(2011)5111-5117.
DOI: 10.1016/j.tsf.2011.01.215
Google Scholar
[12]
M. Shigeta, T. Watanabe, and H. Nishiyama, Numerical investingation for nano-particle synthesis in an RF inductively coupled plasma, Thin Solid Films, 457(2004)192-200.
DOI: 10.1016/j.tsf.2003.12.020
Google Scholar
[13]
Z. Károly, and J. Szépvölgyi, Plasma spheroidization of ceramic particles, Chem. Eng. Process., 44(2005) 221-224.
DOI: 10.1016/j.cep.2004.02.015
Google Scholar
[14]
J.H. Seo, D.U. Kim, J.S. Nam, S.H. Hong, S.B. Sohn, and S.M. Song, Radio frequency thermal plasma treatment for size reduction and spheroidization of glass powders used in ceramic electronic devices. J. Am. Chem. Soc., 90(2007)1717-1722.
DOI: 10.1111/j.1551-2916.2007.01645.x
Google Scholar
[15]
T. Sato, T. Tanigaki, H. Suzuki, Y. Saito, O. Kido, Y. Kimura, C. Kaito, A. Takeda, and S. Kaneko, Structure and optical spectrum of ZnO nanoparticles produced in RF plasma, J. Cryst. Growth., 255(2003) 313-316.
DOI: 10.1016/s0022-0248(03)01250-8
Google Scholar
[16]
N. Kobayashi, Y. Kawakami, K. Kamada, J.G. Li, R. Ye, T. Watanabe, and T. Ishigaki. Spherical submicron-size copper powders coagulated from a vapor phase in RF induction thermal plasma, Thin Solid Films, 516(2008) 4402-4406.
DOI: 10.1016/j.tsf.2007.10.064
Google Scholar
[17]
L.Y. Bai, J.M. Fan, P. Hu, F.L. Yuan, J.L. Li, and Q. Tang, RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate, J. Alloys Compd., 481(2009) 563-567.
DOI: 10.1016/j.jallcom.2009.03.054
Google Scholar