Material Science Chemistry of Electrochemical Microsensors and Applications for Biofilm Research

Article Preview

Abstract:

Microelectrodes, needle-shaped biochemical microsensors fabricated from pulled glass micropipettes, are one of the most prominent, novel methods for studying biofilms. The pulled glass tip can have a diameter of 3–20 μm, allowing for the measurement of the concentrations of specific biological and chemical compounds in microbial communities. Net specific consumption and production rates (i.e., biological activity) at a certain depth can be estimated from the measured concentration profiles. This article is focused on solid-state, needle-type, electrochemical microsensors for detecting important water quality parameters (e.g., oxygen, pH, nitrite, chlorine species, redox, and phosphate). Sensing materials include gold (including a gold-electroplated sensing surface), platinum, carbon-fiber, carbon nanotube, iridium, and cobalt. Emphasis is placed on the material science chemistry behind how electrochemical microelectrode sensors operate. Innovative applications of microsensors, including microelectromechanical systems (MEMS) microelectrode array sensor microfabrication, and three-dimensional microprofile measurement and interpretation will also be demonstrated. Carbon nanotubes (CNTs) are a relatively new member in the carbon family and are being used in biofilm research. Distinctive properties of CNTs and the relationship between structure and their electrochemistry performance are discussed. The electrochemical application of CNTs is focused on nitrite detection.

You might also be interested in these eBooks

Info:

[1] W.G. Characklis, K.C. Marshall: Biofilms (John Wiley & Sons, Inc., New York, 1990).

Google Scholar

[2] P. Bishop: Water Sci. Technol., 55 (2007) 19.

Google Scholar

[3] S. Rodriguez, P. Bishop: Water Sci. Technol., 52 (2005) 27.

Google Scholar

[4] Y. Seo, W.H. Lee, G. Sorial, P.L. Bishop: Environ. Pollut., 157 (2009) 95.

Google Scholar

[5] N.P. Revsbech, B.B. Jørgensen, in: Microelectrodes: their use in microbial ecology, in: M. K.C. (Ed. ) Advanced in Microbial Ecology, Plenum, New York, 1986, p.293.

DOI: 10.1007/978-1-4757-0611-6_7

Google Scholar

[6] X. Chen, P.S. Stewart: Environ. Sci. Technol., 30 (1996) (2078).

Google Scholar

[7] A. Schramm, L.H. Larsen, N.P. Revsbech, N.B. Ramsing, R. Amann, K.H. Schleifer: Appl. Environ. Microb., 62 (1996) 4641.

Google Scholar

[8] S. Okabe, H. Satoh, Y. Watanabe: Appl. Environ. Microb., 65 (1999) 3182.

Google Scholar

[9] D. De Beer, Potentiometric microsensors for in situ measurements in aquatic environments, in: J. Buffle, Horvai, G. (Ed. ) In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation., IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, New York, 2000, p.162.

Google Scholar

[10] W.H. Lee, D.G. Wahman, P.L. Bishop, J.G. Pressman: Environ. Sci. Technol., 45 (2011) 1412.

Google Scholar

[11] Z. Lewandowski, H. Beyenal: Fundamentals of Biofilm Research (CRC Press, New York, 2007).

Google Scholar

[12] D. De Beer, J. Van den Heuvel: Talanta, 35 (1988) 728.

Google Scholar

[13] I. Newman: Plant, Cell & Environment, 24 (2001) 1.

Google Scholar

[14] L. Trenerry, A. McMinn, K. Ryan: Polar Biol., 25 (2002) 72.

Google Scholar

[15] A. Schramm, Microsensors for the Study of Microenvironments and Processes in the Intestine of Invertebrates, in: H. Konig, Varma, A. (Ed. ) Soil Biology, Speriger-Verlag, Berlin, Heidelberg, 2006, p.463.

DOI: 10.1007/3-540-28185-1_20

Google Scholar

[16] W.H. Lee, P.L. Bishop: J. Environ. Eng-ASCE, 136 (2010) 561.

Google Scholar

[17] S. Okabe, H. Satoh, T. Kindaichi, A polyphasic approach to study ecophysiology of complex multispecies nitrifying biofilms, in: M.G. Klots, Stein, L.Y. (Ed. ) Research on Nitrification and Related Processes, Part B, Methods in Enzymology, 2011, p.163.

DOI: 10.1016/b978-0-12-386489-5.00007-5

Google Scholar

[18] F. Jiang, D.H. Leung, S. Li, G.H. Chen, S. Okabe, M. Van Loosdrecht: Water Res., 43 (2009) 3187.

Google Scholar

[19] J.T. Babauta, H.D. Nguyen, H. Beyenal: Environ. Sci. Technol., 45 (2011) 6654.

Google Scholar

[20] J.H. Lee, Y. Seo, W.H. Lee, P. Bishop, I. Papautsky: Emerging Environmental Technologies, Volume II, (2010) 115.

Google Scholar

[21] W.H. Lee, J.H. Lee, W.H. Choi, A.A. Hosni, I. Papautsky, P.L. Bishop: Meas. Sci. Technol., 22 (2011) 042001 (042022pp).

Google Scholar

[22] R. Glud, J. Gundersen, N. Ramsing, Electrochemical and optical oxygen microsensors for in situ measurements, in: J. Buffle, Horvai, G. (Ed. ) In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation., IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, New York, 2000, p.162.

Google Scholar

[23] T. Yu, P.L. Bishop: Water Sci. Technol., 37 (1998) 195.

Google Scholar

[24] T.C. Zhang, P.L. Bishop: Water Sci. Technol., 30 (1994) 47.

Google Scholar

[25] N. Revsbech, In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes, in: Polarographic Oxygen sensors: Aquatic and physiographic applications, Springer, 1983, p.265.

DOI: 10.1007/978-3-642-81863-9_24

Google Scholar

[26] N.P. Revsbech: Limnol. Oceanogr., (1989) 474.

Google Scholar

[27] W.H. Lee, J.G. Pressman, D.G. Wahman, P.L. Bishop: Sensor Actuat. B-Chem., 145 (2010) 734.

Google Scholar

[28] B. Piela, P.K. Wrona: J. Electrochem. Soc., 149 (2002) E55.

Google Scholar

[29] K. Snell, A. Keenan: Electrochimica Acta, 27 (1982) 1683.

Google Scholar

[30] S. Silva, C. Alves, S. Muchado, L. Mazo, L. Avaca: Electroanalysis, 8 (1996) 1055.

Google Scholar

[31] M. Hitchman, Calibration and accuracy of polarographic oxygen sensors, in: Polarographic Oxygen Sensors. Aquatic and Physiological Applications, Springer, 1983, p.18.

DOI: 10.1007/978-3-642-81863-9_2

Google Scholar

[32] AWWA, Fundamentals and Control of Nitrification in Chloraminated Drinking Water Distribution Systems (AWWA Manual M56), 1 ed., American Water Works Association, Denver, Colorado, (2006).

Google Scholar

[33] J.G. Pressman, W.H. Lee, P.L. Bishop, D.G. Wahman: Water Res., 46 (2012) 882.

Google Scholar

[34] D. De Beer, R. Srinivasan, P.S. Stewart: Appl. Environ. Microb., 60 (1994) 4339.

Google Scholar

[35] P. Stewart, J. Rayner, F. Roe, W. Rees: J. Appl. Microbiol., 91 (2001) 525.

Google Scholar

[36] B. Piela, P.K. Wrona: J. Electrochem. Soc., 150 (2003) 255.

Google Scholar

[37] D.A. Davies: Anodic voltammetric determination of monochloramine in water, (University of Wisconsin-Milwaukee, Milwaukee, WI, 1985).

Google Scholar

[38] A.N. Tsaousis: Amperometric determination of hypochlorous acid and monochloramine at gold electrodes (University of Wisconsin-Milwaukee, Milwaukee, WI, 1985).

Google Scholar

[39] T. Yu, P.L. Bishop: Water Environ. Res., 73 (2001) 368.

Google Scholar

[40] D. Xiao, H.Y. Yuan, J. Li, R.Q. Yu; Anal. Chem., 67 (1995) 288.

Google Scholar

[41] R.K. Meruva, M.E. Meyerhoff: Anal. Chem., 68 (1996) (2022).

Google Scholar

[42] R. De Marco, B. Pejcic, Z. Chen: Analyst, 123 (1998) 1635.

Google Scholar

[43] S.O. Engblom: Biosensors and Bioelectronics, 13 (1998) 981.

Google Scholar

[44] W.H. Lee, Y. Seo, P.L. Bishop: Sensor Actuat. B-Chem., 137 (2009) 121.

Google Scholar

[45] W.H. Lee, J.H. Lee, P.L. Bishop, I. Papautsky: Water Environ. Res., 81 (2009) 748.

Google Scholar

[46] J.H. Lee, W.H. Lee, P.L. Bishop, I. Papautsky: J. Micromech. Microeng., 19 (2009) 025022.

Google Scholar

[47] Y. Fu, T. Zhang, P. Bishop: Water Sci. Technol., 29 (1994) 4552.

Google Scholar

[48] S. Iijima: Nature, 354 (1991) 56.

Google Scholar

[49] P.M. Ajayan: Chem. Rev, 99 (1999) 1787.

Google Scholar

[50] M. Valcarcel, S. Cardenas, B.M. Simonet: Anal. Chem., 79 (2007) 4788.

Google Scholar

[51] R.L. McCreery: Chem. Rev., 108 (2008) 2646.

Google Scholar

[52] I. Dumitrescu, P.R. Unwin, J.V. Macpherson: Chem Commun., (2009) 6886.

Google Scholar

[53] K.P. Gong, Y.M. Yan, M.N. Zhang, L. Su, S.X. Xiong, L.Q. Mao: Anal. Sci., 21 (2005) 1383.

Google Scholar

[54] A.F. Holloway, K. Toghill, G.G. Wildgoose, R.G. Compton, M.A.H. Ward, G. Tobias, S.A. Llewellyn, B. Ballesteros, M.L.H. Green, A. Crossley: J. Phys. Chem. C, 112 (2008) 10389.

DOI: 10.1021/jp802127p

Google Scholar

[55] J. Wang, G. Chen, M.P. Chatrathi, M. Musameh: Anal. Chem., 76 (2004) 298.

Google Scholar

[56] H. Boo, R.A. Jeong, S. Park, K.S. Kim, K.H. An, Y.H. Lee, J.H. Han, H.C. Kim, T.D. Chung: Anal. Chem., 78 (2006) 617.

Google Scholar

[57] R.S. Chen, W.H. Huang, H. Tong, Z.L. Wang, J.K. Cheng: Anal. Chem., 75 (2003) 6341.

Google Scholar

[58] J. Chen, M.A. Hamon, H. Hu, Y.S. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon: Science, 282 (1998) 95.

Google Scholar

[59] M. Baibarac, I. Baltog, S. Lefrant, J.Y. Mevellec, O. Chauvet: Chem. Mater., 15 (2003) 4149.

DOI: 10.1021/cm021287x

Google Scholar

[60] V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J.P. Briand, M. Prato: Chem. Commun., (2002) 3050.

DOI: 10.1039/b209843a

Google Scholar

[61] C. Richard, F. Balavoine, P. Schultz, T.W. Ebbesen, C. Mioskowski: Science, 300 (2003) 775.

Google Scholar

[62] J. Wang, M. Musameh: Anal. Chem., 75 (2003) (2075).

Google Scholar

[63] F. Valentini, A. Amine, S. Orlanducci, M.L. Terranova, G. Palleschi: Anal. Chem., 75 (2003) 5413.

Google Scholar

[64] M.D. Rubianes, G.A. Rivas: Electrochem. Commun., 5 (2003) 689.

Google Scholar

[65] J.J. Gooding, R. Wibowo, J.Q. Liu, W.R. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G. Shapter, D.B. Hibbert: J. Am. Chem. Soc., 125 (2003) 9006.

DOI: 10.1021/ja035722f

Google Scholar

[66] Y.H. Lin, F. Lu, Y. Tu, Z.F. Ren: Nano Lett., 4 (2004) 191.

Google Scholar

[67] X.F. Guo, Y.H. Yun, V.N. Shanov, H.B. Halsall, W.R. Heineman: Electroanal., 23 (2011) 1252.

Google Scholar

[68] K.P. Gong, S. Chakrabarti, L.M. Dai: Angew. Chem. Int. Edit, 47 (2008) 5446.

Google Scholar

[69] J. Wang, M. Musameh, Y.H. Lin: J. Am. Chem. Soc., 125 (2003) 2408.

Google Scholar

[70] M.N. Zhang, Y.M. Yan, K.P. Gong, L.Q. Mao, Z.X. Guo, Y. Chen: Langmuir, 20 (2004) 8781.

Google Scholar

[71] J.K. Campbell, L. Sun, R.M. Crooks: J. Am. Chem. Soc., 121 (1999) 3779.

Google Scholar

[72] J. Zhang, H.L. Zou, Q. Qing, Y.L. Yang, Q.W. Li, Z.F. Liu, X.Y. Guo, Z.L. Du: J. Phys. Chem. B, 107 (2003) 3712.

Google Scholar

[73] H.X. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang: Anal. Chem., 73 (2001) 915.

Google Scholar

[74] B. Šljukic, C.E. Banks, G. Richard: Nano Lett., 6 (2006) 1556.

Google Scholar

[75] C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton: Chem. Commun., (2005) 829.

Google Scholar

[76] S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-Sodi, A.C. Ferrari, R. Dunin-Borkowski, S. Lizzit, L. Petaccia, A. Goldoni: J. Robertson, Nano Lett., 7 (2007) 602.

DOI: 10.1021/nl0624824

Google Scholar

[77] M. Pumera: Langmuir, 23 (2007) 6453.

Google Scholar

[78] C.E. Banks, A. Crossley, C. Salter, S.J. Wilkins, R.G. Compton: Angew. Chem. Int. Edit., 45 (2006) 2533.

Google Scholar

[79] B. Sljukic, C.E. Banks, R.G. Compton: Nano Lett., 6 (2006) 1556.

Google Scholar

[80] J. Kruusma, N. Mould, K. Jurkschat, A. Crossley, C.E. Banks: Electrochem. Commun., 9 (2007) 2330.

Google Scholar

[81] M. Pumera: Nanoscale Res. Lett., 2 (2007) 87.

Google Scholar

[82] M. Pumera: Chem-Eur. J., 15 (2009) 4970.

Google Scholar

[83] A. Chou, T. Bocking, N.K. Singh, J.J. Gooding: Chem. Commun., (2005) 842.

Google Scholar

[84] C.P.L. Grady, G.T. Daigger, H.C. Lim, Biological Wastewater Treatment (Second ed., CRC Press, 1999).

Google Scholar

[85] J. Dutt, J. Davis: J. Environ. Monitor., 4 (2002) 465.

Google Scholar

[86] Y.D. Zhao, W.D. Zhang, Q.M. Luo, S.F.Y. Li: Microchem. J., 75 (2003) 189.

Google Scholar

[87] L.Y. Jiang, R.X. Wang, X.M. Li, L.P. Jiang, G.H. Lu: Electrochem. Commun., 7 (2005) 597.

Google Scholar

[88] M.L. Guo, J.H. Chen, J. Li, B. Tao, S.Z. Yao: Anal. Chim. Acta, 532 (2005) 71.

Google Scholar

[89] D.Y. Zheng, C.G. Hu, Y.F. Peng, S.S. Hu: Electrochim. Acta, 54 (2009) 4910.

Google Scholar

[90] A.J. Lin, Y. Wen, L.J. Zhang, B. Lu, Y. Li, Y.Z. Jiao, H.F. Yang: Electrochim. Acta, 56 (2011) 1030.

Google Scholar

[91] L.Y. Zhang, M. Yi: Bioproc. Biosyst. Eng, 32 (2009) 485.

Google Scholar

[92] C.M. Silveira, J. Baur, M. Holzinger, J.J.G. Moura, S. Cosnier, M.G. Almeida: Electroanal., 22 (2010) 2973.

Google Scholar

[93] H.Y. Xian, P. Wang, Y.A. Zhou, Q.F. Lu, S.N. Wu, Y.X. Li, L. Wang: Microchim. Acta, 171 (2010) 63.

Google Scholar

[94] R. Yue, Q. Lu, Y.K. Zhou: Biosens. Bioelectron., 26 (2011) 4436.

Google Scholar

[95] S. Liu, J.Q. Tian, L. Wang, Y.L. Luo, X.P. Sun: Analyst., 136 (2011) 4898.

Google Scholar

[96] D.X. Ye, L.Q. Luo, Y.P. Ding, Q. Chen, X. Liu: Analyst., 136 (2011) 4563.

Google Scholar

[97] S.E.S.E. Wakkad, T. Salem: J. Phys. Chem., 54 (1950) 1371.

Google Scholar

[98] J.T. Stock, W.C. Purdy, L.M. Garcia: Chem. Rev., 58 (1958) 611.

Google Scholar

[99] D. Midgley: Talanta, 37 (1990) 767.

Google Scholar

[100] S. Glab, G. Edwall, P.A. Jongren, F. Ingman: Talanta, 28 (1981) 301.

Google Scholar

[101] A. Fog, R.P. Buck: Sensor Actuat. B-Chem., 5 (1984) 137.

Google Scholar

[102] X. Beebe, T. Rose: Biomedical Engineering, IEEE Transactions on, 35 (1988) 494.

Google Scholar

[103] L. Schiavone, W. Dautremont‐Smith, G. Beni, J. Shay: Appl. Phys. Lett., 35 (1979) 823.

DOI: 10.1063/1.90950

Google Scholar

[104] S. Gottesfeld, J. McIntyre: J. Electrochem. Soc., 126 (1979) 742.

Google Scholar

[105] S.A.M. Marzouk, S. Ufer, R.P. Buck, T.A. Johnson, L.A. Dunlap, W.E. Cascio: Anal. Chem., 70 (1998) 5054.

Google Scholar

[106] L. Robblee, J. Lefko, S. Brummer: J. Electrochem. Soc., 130 (1983) 731.

Google Scholar

[107] L. Robblee: Materials Research Society symposia proceedings, 55 (1986) 303.

Google Scholar

[108] J. Klein, Klein: J. Vac. Sci. Technol. A, 7 (1989) 3043.

Google Scholar

[109] W.H. Choi, I. Papautsky: in, SPIE, (2011).

Google Scholar

[110] K. Yamanaka: JPN. J. Appl. Phys., 28 (1989) 632.

Google Scholar

[111] H.G. Kruszyna, I. Bodek, L.K. Libby, R.M. Milburn: Inorg. Chem., 13 (1974) 434.

Google Scholar

[112] A.N. Bezbaruah, T.C. Zhang: Anal. Chem., 74 (2002) 5726.

Google Scholar

[113] E. Kinoshita, F. Ingman, G. Edwall, S. Thulin: Talanta, 33 (1986) 125.

Google Scholar

[114] S.A.M. Marzouk: Anal. Chem., 75 (2003) 1258.

Google Scholar

[115] T. Yu, G. Ji: Electrochemical Methods in Soil and Water Research (Pergamon, Oxford (UK), 1993).

Google Scholar

[116] J.H. Lee, W.H. Lee, P.L. Bishop, I. Papautsky, J. Micromech. Microeng., 19 (2009) 025022.

Google Scholar

[117] T.S. Lim, J.H. Lee, I. Papautsky: Sensor Actuat. B-Chem., 141 (2009) 50.

Google Scholar

[118] J.H. Lee, A. Jang, P.R. Bhadri, R.R. Myers, W. Timmons, F.R. Beyette, P.L. Bishop, I. Papautsky: Sensor Actuat. B-Chem., 115 (2006) 220.

Google Scholar

[119] J.H. Lee, Y. Seo, W.H. Lee, P. Bishop, I. Papautsky: Emerging Environmental Technologies, Volume II, (2010) 115.

Google Scholar

[120] J.H. Lee, Y. Seo, T.S. Lim, P.L. Bishop, I. Papautsky: Environ. Sci. Technol, 41 (2007) 7857.

Google Scholar

[121] A. Jang, J.H. Lee, P.R. Bhadri, S.A. Kumar, W. Timmons, F.R. Beyette Jr, I. Papautsky, P.L. Bishop: Environ. Sci. Technol., 39 (2005) 6191.

DOI: 10.1021/es050377a

Google Scholar

[122] J.H. Lee, T.S. Lim, Y. Seo, P.L. Bishop, I. Papautsky: Sensor Actuat. B-Chem., 128 (2007) 179.

Google Scholar

[123] J.H. Lee, A. Jang, P.R. Bhadri, R.R. Myers, W. Timmons, F.R. Beyette Jr, P.L. Bishop, I. Papautsky: Sensor Actuat. B-Chem., 115 (2006) 220.

Google Scholar

[124] M. Wang, S. Yao, M. Madou: Sensor Actuat. B-Chem., 81 (2002) 313.

Google Scholar

[125] J.H. Lee, Y. Seo, W.H. Lee, P. Bishop, I. Papautsky, Emerging Environmental Technologies, Volume II, (2010) 115.

Google Scholar

[126] J.H. Lee: Needle-Type Multi-Analyte Microelectrode Array Sensors for In Situ Biological Applications (University of Cincinnati, 2008).

Google Scholar

[127] W.H. Choi, W. Lee, P.L. Bishop, I. Papautsky, in: Proc. International Conference on Chemical and Biochemical Analysis Systems (µTAS).

Google Scholar

[128] J.H. Lee, P. Bishop, I. Papautsky, in: Sensors, 2008 IEEE, IEEE, 1406.

Google Scholar

[129] J. Pritchard, K. Law, A. Vakurov, P. Millner, S.P.J. Higson: Biosens. Bioelectron., 20 (2004) 765.

Google Scholar

[130] C.T. Nordhausen, E.M. Maynard, R.A. Normann, Brain Research, 726 (1996) 129-140.

Google Scholar

[131] P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, R.A. Normann: Biomedical Engineering, IEEE Transactions on, 38 (1991) 758.

Google Scholar

[132] L. Xu, S. Furukawa, J.C. Middlebrooks: J. Neurophysiol. 80 (1998) 882.

Google Scholar

[133] V.S. Polikov, P.A. Tresco, W.M. Reichert: J. Neurosci. Meth., 148 (2005) 1.

Google Scholar

[134] K.E. Jones, P.K. Campbell, R.A. Normann: Ann. Biom. Eng., 20 (1992) 423.

Google Scholar

[135] A.L. Benabid; Curr. Opin. Neurobiol., 13 (2003) 696.

Google Scholar

[136] P. VanHoudt, Z. Lewandowski, B. Little: Biotechnol. Bioeng., 40 (1992) 601.

Google Scholar

[137] W.H. Lee, J.H. Lee, P.L. Bishop, I. Papautsky: Water Environ. Res, 81 (2009) 748.

Google Scholar

[138] R. Renner: Environ. Health Persp., 118 (2010) A202.

Google Scholar

[139] C. Nguyen, K. Stone, B. Clark, M. Edwards, G. Gagnon, A. Knowles: Impact of Chloride: Sulfate Mass Ratio (CSMR) Changes on Lead Leaching in Potable Water (Water Research Foundation, 2010).

Google Scholar

[140] S. Lamaka, O. Karavai, A. Bastos, M. Zheludkevich, M. Ferreira: Electrochem. Comm., 10 (2008) 259.

Google Scholar

[141] S.V. Lamaka, M.G. Taryba, M.L. Zheludkevich, M.G.S. Ferreira: Electroanal., 21 (2009) 2447.

Google Scholar

[142] C. de la Rosa, T. Yu: Environ. Sci. Technol., 39 (2005) 5196.

Google Scholar

[143] P. Berg, N. Risgaard-Petersen, S. Rysgaard: Limnol. Oceanogr., 43 (1998) 1500.

DOI: 10.4319/lo.1998.43.7.1500

Google Scholar

[144] S. Nakano, A. Takeshita, T. Ohtsuka, D. Nakai: Limnology, 7 (2006) 213.

Google Scholar

[145] E. Krawczyk-Bärsch, K. Grossmann, T. Arnold, S. Hofmann, A. Wobus: Geochim. Cosmochim. Ac., 72 (2008) 5251.

Google Scholar

[146] Z. Lewandowski: Water Res., 34 (2000) 2620.

Google Scholar

[147] W.S. Broecker, T.H. Peng: Tellus, 26 (1974) 21.

Google Scholar

[148] P.L. Bishop: Water Sci. Technol., 36 (1997) 287.

Google Scholar

[149] J.X. Zeng, W.Z. Wei, X.R. Zhai, P.H. Yang, J. Yin, L. Wu, X.Y. Liu, K. Liu, S.G. Gong: Microchim. Acta, 155 (2006) 379.

Google Scholar

[150] G. Zhao, K.Z. Liu, S. Lin, J. Liang, X.Y. Guo, Z.J. Zhang: Microchim. Acta, 144 (2004) 75.

Google Scholar

[151] S. Rajesh, A.K. Kanugula, K. Bhargava, G. Ilavazhagan, S. Kotamraju, C. Karunakaran: Biosens. Bioelectron., 26 (2010) 689.

Google Scholar

[152] W. -H. Choi, I. Papautsky: J. Micro/Nanolith. MEMS MOEMS, (2011) 020501-1.

Google Scholar

[153] W. -H. Choi: Needle-type sensors for in situ 3-D multi-analyte mapping, in School of Electronics and Computing Systems (School of Electronics and Computing Systems, University of Cincinnati, Cincinnati, 2011).

Google Scholar