Immobilization of Iron Nanoparticles on Multi Substrates and its Reduction Removal of Chromium (VI) from Waste Streams

Article Preview

Abstract:

This article describes the in-situ synthesis and immobilization of iron nanoparticles on several substrates at room temperature using NaBH4 as a reducing agent and ascorbic acid as capping agent. The method is very effective in protecting iron nanoparticles from air oxidation for more than 30 days. Substrates used to immobilize iron nanoparticles are spherical polymer resins (size of 100–200 mesh) and novel carbon substrates prepared from high temperature carbonization of e-spun nylon and polyacrylonitrile fabrics. Iron nanoparticles (40–100nm) immobilized sample showed higher activity for the reductive removal of hazardous hexavalent Cr (VI) compared to free floating iron nanoparticles at ambient temperature. Iron immobilized substrates has a great potential to be used not only for the removal of Cr (VI) in waste stream but also for oxygen scavenger for food packaging.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-162

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. T. Wu, Y. D. Yao, C. R. C. Wang, P. F. Chen and E. T. Yeh, J. Appl. Phys. 85 (1999) 5959.

Google Scholar

[2] E. W. Wong, M. J. Bronikowski, M. E. Hoenk, R. S. Kowalczyk and B. D. Hunt, Chem. Mater. 17 (2005) 237.

Google Scholar

[3] S. A. Matjetich and Y. Jin, Science 284 (1999) 470.

Google Scholar

[4] F. Li, C. Vipulanandan and K. K. Mohanty, Colloids Surf., A 223 (2003) 103.

Google Scholar

[5] J. Miltz and M. Perry, Packag. Technol. Sci. 18 (2005) 21.

Google Scholar

[6] T. Klein and D. Knorr, J. Food Sci. 55 (1990) 869.

Google Scholar

[7] D. L. Huber, Small 1 (2005) 482.

Google Scholar

[8] J. Park, K. An, Y. Hwang, J-G, Park, H-J. Noh, J-Y. Kim, J-H. Park, N-M. Hwang and T. Hyeon, Nat. Mater. 3 (2004) 891.

Google Scholar

[9] L-M. Lacroix, S. Lachaize, A. Falqui, M. Respaud and B. Chaudret, J. Am. Chem. Soc. 131 (2009) 549.

DOI: 10.1021/ja805719c

Google Scholar

[10] N. Shao-Ironng, L. Yong, X. Xin-hua and L. Zhang-hua, J. Zhejiang Uni. Sci, B 610 (2005) 1022.

Google Scholar

[11] O. Margeat, F. Dumestre, C. Amiens, B. Chaudret, P. Lecante and M. Respaud, Prog. Sol. Sta. Chem. 33 (2005) 71.

DOI: 10.1016/j.progsolidstchem.2005.11.002

Google Scholar

[12] H. Shang, W. -S. Chang, S. Kan, S. A. Majetich and G. U. Lee, Langmuir, 22 (2009) 2516.

Google Scholar

[13] H. Qian, Y. Wu, Y. Liu and X. Xu, Front. Environ. Sci. Engin. 1 (2008) 51.

Google Scholar

[14] J. Z. Wen, C. F. Goldsmith, R. W. Ashcraft and W. H. Green, J. Phys. Chem. C 111 (2007) 5677.

Google Scholar

[15] C. J. Choi, O. Tolochko and B. K. Kim, Mat. Lett. 56 (2002) 289.

Google Scholar

[16] B. Jeyadevan, A. Hobo, K. Urakawa, C. N. Chinnasamy, K. Shinoda and K. Tohji, J. Appl. Phys. 93 (2003) 7574.

DOI: 10.1063/1.1558258

Google Scholar

[17] H. O. Jungk and C. Feldmann, J. Mater. Res. 15 (2000) 2244.

Google Scholar

[18] J. Cao, P. Clasen and W-X, Zhang, J. Mater. Res., 20 (2005) 3238.

Google Scholar

[19] F. Dumitrache, I. Morjan , R. Alexandrescu , V. Ciupina , G. Prodan , I. Voicu , C. Fleaca , L. Albu , M. Savoiu , I. Sandu , E. Popovici and I. Soare, Appl. Surf. Science 247 (2005) 25.

DOI: 10.1016/j.apsusc.2005.01.037

Google Scholar

[20] S. Xiao, M. Shen, R. Guo, S. Wang and X. Shi, J. Phys. Chem. C 113 (2009) 18062.

Google Scholar

[21] S. M. Ponder, J. G. Darab and T. E. Mallouk, Envir. Sci. Technol. 34 (2000) 2564.

Google Scholar

[22] Y. Xu and D. Zhao, Water. Res. 41 (2007) 2101.

Google Scholar

[23] Z. ZongShan, L. JingFu, Z. QunFang, H. jingTian and J. GuiBin, Sci China Ser B-Chem. 51(2) (2008) 186.

Google Scholar

[24] H. Kim, H-J. Hong, Y-J. Lee, H-J, Shin and J-W, Yang, Desalination 223 (2008) 212.

Google Scholar

[25] Q. Huang, X. Shi, R.A. Pinto, E. J. Petersen and W. J. Weber Jr, Environ. Sci. Technol. 42(23) (2008) 8884.

Google Scholar

[26] S. M. Ponder, J. G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis, N. Edelstein, W. Lukens, H. Nitsche, L. Rao, D. K. Shuh and T. E. Mallouk, Chem. Mater. 13 (2001) 479.

DOI: 10.1021/cm000288r

Google Scholar

[27] S. Xiao, S. Wu, M. Shen, R. Guo, S. Wang and X. Shi, J. Phys: conference series 188 (2009) 012015.

Google Scholar

[28] Y. H. Huang, T. C. Zhang, P. J. Shea and S. D. Comfort, J. Environ. Qual. 31 (2003) 1306.

Google Scholar

[29] N. Saleh, T. Phenrat, K. Sirk, B. Dufour, J. Ok, T. Sarbu, K. Matyjaszewski, R. D. tilton and G. V. Lowry, Nano. Lett. 5 (2005) 2489.

DOI: 10.1021/nl0518268

Google Scholar

[30] Code of Federal Regulation, section 141, 52, Title 40. P. 407.

Google Scholar