Influence of Poly (Ethylene Glycol) and Oleylamine on the Formation of Nano to Micron Size Spherical SiO2 Particles

Article Preview

Abstract:

We report an eco-friendly synthesis of well–controlled, nano-to-micron-size, spherical SiO2 particles using non-hazardous solvent and a byproducts-producing system. It was found that the morphology and size of spherical SiO2 particles are controlled by adjusting the concentration of PEG and oleylamine, ethanol solvent selection, and reaction temperature. The SEM images show spherical-shaped silica particles with homogeneous particle-size distribution. Structural and optical properties of the silica particles were investigated by FT-IR absorption spectroscopy and photoluminescence. The resultant SiO2 particles from the synthesis system were easily dispersed in both water and organic solvent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-169

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.K. Iler, The Chemistry of Silica, Wiley, New York.

Google Scholar

[2] M. A. El sayed, Acc. Chem. Res. 37 2004 326.

Google Scholar

[3] Dhruba J. Bharali, Ilona Klejbor, Ewa K. Stachowiak, Purnendu Dutta, Indrajit Roy, Navjot Kaur, Earl J. Bergey, Paras N. Prasad, and Michal K. Stachowiak, PNAS, 102 2005 11539.

DOI: 10.1073/pnas.0504926102

Google Scholar

[4] François Torney, Brian G. Trewyn, Victor S. -Y. Lin and Kan Wang, Nature Nanotechnology, 2 2007 295.

Google Scholar

[5] Jun Wang, Guodong Liu, Mark H. Engelhard and Yuehe Lin, Anal. Chem. 78 2006 6974.

Google Scholar

[6] W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci. 26 1968 62.

Google Scholar

[7] S. Tabatabei, A. Shukohfar, R. Aghababazadeh and A. Mirhabibi, J. Phys. 26 2006 371.

Google Scholar

[8] G.H. Bogush, M.A. Tracy and C.F. Zukoski, J. Non-Cryst. Solids, 104 1988 95.

Google Scholar

[9] M. Yang, G. Wang and Z. Yang, Mater. Chem. Phys. 111 2008 5.

Google Scholar

[10] T. Yanagishita, Y. Tomabechi, K. Nishio and H. Masuda, Langmuir, 20 2004 554.

Google Scholar

[11] F. Schlottig, M. Textor, U. Georgi and G. Roewer, J. Mater. Sci. Lett. 18 1999 599.

Google Scholar

[12] N. Shirahata, S. Furumi and Y. Sakka, J. Crys. Gro. 311 2009 634.

Google Scholar

[13] H. Yamauchi, T. Ishikawa and S. Kondo, J. Collids. Surf. 37 1989 71.

Google Scholar

[14] K. S. Kin, J. R. Bartlett, C. J. A. Barbe and L. Kong, Langmuir, 23 2007 3017.

Google Scholar

[15] K. Osseo-Asare and F. J. Arriagada, J. Colloid. Interface. Sci. 218 1999 68.

Google Scholar

[16] K. S. Finnie, J. R. Bartlett, C. J A. Barbe and L. Kong, Langmuir 23 2007 3017.

Google Scholar

[17] T. Yanagishita, Y. Tomabechi, K. Nishio and H. Masuda, Langmuir 20 2004 554.

Google Scholar

[18] W. Koch, S. K. Friedlander, Part. Syst. Charac. 8 1991 86.

Google Scholar

[19] B. Yan, C. V. McNeff, P. W. Carr and A. V. McCormick, J. Am. Ceram. Soc. 88 2005 707.

Google Scholar

[20] H. Zhang, D. R. Yang, X. Y. Ma, Y. J. Ji, J. Xu and D. L. Que, Nanotechnology, 15 2004 622.

Google Scholar

[21] Z. Quan, Z. Wang, P. Yang, J. Lin and J. Fang, Inorg. Chem. 46 2007 1354.

Google Scholar

[22] G. G. Kumar, S. Senthilarasu, D. N. Lee, A. R. Kim, P. Kim, K. S. Nahm, S-H. Lee and R. N. Elizabeth, Synth. Met, 158 2008 684.

Google Scholar

[23] X. H. An, G. W. Meng, Q. Wei, X. R. Zhang, Y. F. Hao and L. D. Zhang, Adv. Mater. 17 2005 1781.

Google Scholar

[24] H. Nishikawa, E. Watanabe, D. Ito and Y. Ohki, Phys. Rev. Lett. 72 1994 2101.

Google Scholar

[25] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen and L. C. Chen, Nat. Mater. 5 2006 102.

Google Scholar

[26] J. Zhao, D. S. Mao, Z. X. Lin, B. Y. Jiang, Y. H. Yu, X. H. Liu, H. Z. Wang and G. Q. Yang, Mater. Lett. 38 1999 321.

Google Scholar

[27] L. Li, G. Li, R. L. Smith Jr. and H. Inomata, Chem. Mater. 12 2000 3705.

Google Scholar