On the Role of Graphene in Polymer-Based Bulk Heterojunction Solar Cells

Article Preview

Abstract:

As a new material, graphene is considered to have great potential in photovoltaic applications, due to its superior physical and electronic properties. In this manuscript, the behavior of graphene nanosheets prepared by different processing methods were investigated in order to probe their applicability in polymer-based bulk heterojunction optoelectronic devices. Raman spectroscopy was employed to study the formation of interfaces between the conjugated polymer and graphene, while photoluminescence quenching was used to investigate charge transfer from P3HT to graphene. The current-voltage characteristics of fabricated cells were investigated to elucidate the role of graphene in their performance. We demonstrate that the addition of small quantities of graphene promotes exciton dissociation and charge transport in P3HT:PCBM BHJ devices, leading to a novel paradigm for organic solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-60

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pope, M. and Swenberg, C. E., Electronic processes in organic crystals and polymers. 2nd ed. Monographs on the physics and chemistry of materials1999, New York: Oxford University Press. xxix, 1328 p.

Google Scholar

[2] Siebentritt, S., Gunster, S., and Meissner, D., Junction Effects in Phthalocyanine Thin-Film Solar-Cells. Synth. Met., 1991. 41(3): pp.1173-1176.

DOI: 10.1016/0379-6779(91)91581-t

Google Scholar

[3] Tang, C. W., Two-layer organic photovoltaic cell. Appl. Phys. Lett., 1986. 48(2): pp.183-185.

Google Scholar

[4] Sariciftci, N. S., et al., Photoinduced Electron-Transfer from a Conducting Polymer to Buckminster fullerene. Science, 1992. 258(5087): pp.1474-1476.

DOI: 10.1126/science.258.5087.1474

Google Scholar

[5] Yu, G., et al., Polymer photovoltaic cells: Enhanced efficiencie via a network of internal donor-acceptor heterojunctions. Science, 1995. 270(5243): pp.1789-1791.

DOI: 10.1126/science.270.5243.1789

Google Scholar

[6] Hoppe, H. and Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem., 2006. 16(1): pp.45-61.

DOI: 10.1039/b510618b

Google Scholar

[7] Dennler, G., Scharber, M. C., and Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater., 2009. 21(13): pp.1323-1338.

DOI: 10.1002/adma.200801283

Google Scholar

[8] Hains, A. W., et al., Molecular Semiconductors in Organic Photovoltaic Cells. Chem. Rev., 2010. 110(11): pp.6689-6735.

DOI: 10.1021/cr9002984

Google Scholar

[9] Deibel, C. and Dyakonov, V., Polymer-fullerene Bulk Heterojunction Solar Cells. Rep. Prog. Phys., 2010. 73(9): pp.1-39.

DOI: 10.1088/0034-4885/73/9/096401

Google Scholar

[10] Vacar, D., et al., Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends. Phys. Rev. B, 1997. 56(8): pp.4573-4577.

DOI: 10.1103/physrevb.56.4573

Google Scholar

[11] Mihailetchi, V. D., et al., Charge transport and photocurrent generation in poly (3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater., 2006. 16(5): pp.699-708.

DOI: 10.1002/adfm.200500420

Google Scholar

[12] Blom, P. W. M., et al., Device physics of polymer : fullerene bulk heterojunction solar cells. Adv. Mater., 2007. 19(12): pp.1551-1566.

DOI: 10.1002/adma.200601093

Google Scholar

[13] Kline, R. J., et al., Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules, 2005. 38(8): pp.3312-3319.

DOI: 10.1021/ma047415f

Google Scholar

[14] Shaheen, S. E., et al., 2. 5% efficient organic plastic solar cells. Appl. Phys. Lett., 2001. 78(6): pp.841-843.

Google Scholar

[15] Facchetti, A., et al., Building blocks for N-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized ligothiophenes (nTs; n=2-6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. J. Am. Chem. Soc., 2004. 126(41): pp.13480-13501.

DOI: 10.1021/ja048988a

Google Scholar

[16] Hoppe, H., et al., Nanoscale Morphology of Conjugated Polymer/fullerene-based Bulk-heterojunction Solar Cells. Adv. Funct. Mater., 2004. 14(10): pp.1005-1011.

DOI: 10.1002/adfm.200305026

Google Scholar

[17] Erb, T., et al., Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater., 2005. 15(7): pp.1193-1196.

DOI: 10.1002/adfm.200400521

Google Scholar

[18] Yang, X. N., et al., Nanoscale morphology of high-performance polymer solar cells. Nano Lett., 2005. 5(4): pp.579-583.

Google Scholar

[19] Venkataraman, D., et al., Role of Molecular Architecture in Organic Photovoltaic Cells. J. Phys. Chem. Lett., 2010. 1(6): pp.947-958.

Google Scholar

[20] Ma, W. L., et al., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater., 2005. 15(10): pp.1617-1622.

DOI: 10.1002/adfm.200500211

Google Scholar

[21] Lungenschmied, C., et al., Real-time in-situ observation of morphological changes in organic bulk-heterojunction solar cells by means of capacitance measurements. J. Appl. Phys., 2011. 109(4).

DOI: 10.1063/1.3549727

Google Scholar

[22] Li, Y., et al., Thermal treatment under reverse bias: Effective tool for polymer/fullerene bulk heterojunction solar cells. Synth. Met., 2008. 158(5): pp.190-193.

DOI: 10.1016/j.synthmet.2007.12.015

Google Scholar

[23] Giridharagopal, R. and Ginger, D. S., Characterizing Morphology in Bulk Heterojunction Organic Photovoltaic Systems. J. Phys. Chem. Lett., 2010. 1(7): pp.1160-1169.

DOI: 10.1021/jz100100p

Google Scholar

[24] Chen, D. A., et al., P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Lett., 2011. 11(2): pp.561-567.

DOI: 10.1021/nl103482n

Google Scholar

[25] Brabec, C. J., et al., Production aspects of organic photovoltaics and their impact on the commercialization of devices. MRS Bull., 2005. 30(1): pp.50-52.

DOI: 10.1557/mrs2005.10

Google Scholar

[26] Kim, Y., et al., Composition and annealing effects in polythiophene/fullerene solar cells. Journal of Materials Science, 2005. 40(6): pp.1371-1376.

Google Scholar

[27] Hwang, I. W., Moses, D., and Heeger, A. J., Photoinduced carrier generation in P3HT/PCBM bulk heterojunction materials. J. Phys. Chem. C, 2008. 112(11): pp.4350-4354.

DOI: 10.1021/jp075565x

Google Scholar

[28] Huang, Y. C., et al., Quantitative nanoscale monitoring the effect of annealing process on the morphology and optical properties of poly(3-hexylthiophene)/[6, 6]-phenyl C-61-butyric acid methyl ester thin film used in photovoltaic devices. J. Appl. Phys., 2009. 106(3).

DOI: 10.1063/1.3187930

Google Scholar

[29] Marsh, R. A., et al., Effect of Annealing on P3HT: PCBM Charge Transfer and Nanoscale Morphology Probed by Ultrafast Spectroscopy. Nano Lett., 2010. 10(3): pp.923-930.

DOI: 10.1021/nl9038289

Google Scholar

[30] Howard, I. A., et al., Effect of Morphology on Ultrafast Free Carrier Generation in Polythiophene: Fullerene Organic Solar Cells. J. Am. Chem. Soc., 2010. 132(42): pp.14866-14876.

DOI: 10.1021/ja105260d

Google Scholar

[31] Beaujuge, P. M. and Fréchet, J. M. J., Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications. J. Am. Chem. Soc., (2011).

DOI: 10.1021/ja2073643

Google Scholar

[32] Skotheim, T. A., Elsenbaumer, R. L., and Reynolds, J. R., Handbook of conducting polymers. 2nd ed1998, New York: M. Dekker. xiii, 1097 p.

Google Scholar

[33] Morita, S., et al., The Absorption-Spectrum and a Cyclic Voltammogram of C-60-Doped Poly(3-Alkylthiophene). J Phys-Condens Mat, 1993. 5(8): p. L103-L106.

DOI: 10.1088/0953-8984/5/8/001

Google Scholar

[34] Facchetti, A., pi-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mat., 2011. 23(3): pp.733-758.

DOI: 10.1021/cm102419z

Google Scholar

[35] Mozer, A. J., et al., Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: A comparative study. Phys. Rev. B, 2005. 71(3).

DOI: 10.1103/physrevb.71.035214

Google Scholar

[36] Geim, A. K. and Novoselov, K. S., The rise of graphene. Nat. Mater., 2007. 6(3): pp.183-191.

Google Scholar

[37] Novoselov, K. S., et al., Electronic properties of graphene. Phys Status Solidi B, 2007. 244(11): pp.4106-4111.

Google Scholar

[38] Liu, Q., et al., Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT. Adv. Funct. Mater., 2009. 19(6): pp.894-904.

DOI: 10.1002/adfm.200800954

Google Scholar

[39] Yang, Z. L., et al., Preparation of poly(3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Appl Surf Sci, 2010. 257(1): pp.138-142.

DOI: 10.1016/j.apsusc.2010.06.051

Google Scholar

[40] Li, S. S., et al., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 2010. 4(6): pp.3169-3174.

DOI: 10.1021/nn100551j

Google Scholar

[41] Hill, C. M., Zhu, Y., and Pan, S., Fluorescence and Electroluminescence Quenching Evidence of Interfacial Charge Transfer in Poly (3-hexylthiophene): Graphene Oxide Bulk Heterojunction Photovoltaic Devices. ACS Nano, 2011. 5(2): pp.942-951.

DOI: 10.1021/nn1022457

Google Scholar

[42] Yu, D., et al., Soluble P3HT-Grafted Graphene for Efficient Bilayer−Heterojunction Photovoltaic Devices. ACS Nano, 2010. 4(10): pp.5633-5640.

DOI: 10.1021/nn101671t

Google Scholar

[43] Yu, D. S., et al., Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. J. Phys. Chem. Lett., 2011. 2(10): pp.1113-1118.

DOI: 10.1021/jz200428y

Google Scholar

[44] Gus'kova, O. A., et al., Self-assembled monolayers of beta-alkylated oligothiophenes on graphite substrate: Molecular dynamics simulation. J. Phys. Chem. C, 2007. 111(19): pp.7165-7174.

DOI: 10.1021/jp0704618

Google Scholar

[45] Surin, M., et al., Molecule-molecule versus molecule-substrate interactions in the assembly of oligothiophenes at surfaces. J. Phys. Chem. B, 2006. 110(15): pp.7898-7908.

DOI: 10.1021/jp056824q

Google Scholar

[46] Wang, Y. B., et al., Fluorescence Quenching in Conjugated Polymers Blended with Reduced Graphitic Oxide. J. Phys. Chem. C, 2010. 114(9): pp.4153-4159.

DOI: 10.1021/jp9097793

Google Scholar

[47] Yu, Y. -J., et al., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett., 2009. 9(10): pp.3430-3434.

DOI: 10.1021/nl901572a

Google Scholar

[48] Kudin, K. et al., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2008. 8: pp.36-41.

Google Scholar

[49] Rao, A. M., et al., Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997. 388(6639): pp.257-259.

DOI: 10.1038/40827

Google Scholar

[50] Su, Q., et al., Composites of Graphene with Large Aromatic Molecules. Adv. Mater., 2009. 21(31): p.3191.

Google Scholar

[51] Yu, F. and Kuppa, V.K. The performance of P3HT: PCBM solar cells with pristine graphene. Appl. Phys. Lett. (submitted).

Google Scholar

[52] Kymakis, E., Kornilios, N. and Koudoumas, E. Carbon nanotube doping of P3HT : PCBM photovoltaic devices. J. Phys. D. Appl. Phys., 2008. 41: p.165110.

DOI: 10.1088/0022-3727/41/16/165110

Google Scholar