[1]
Pope, M. and Swenberg, C. E., Electronic processes in organic crystals and polymers. 2nd ed. Monographs on the physics and chemistry of materials1999, New York: Oxford University Press. xxix, 1328 p.
Google Scholar
[2]
Siebentritt, S., Gunster, S., and Meissner, D., Junction Effects in Phthalocyanine Thin-Film Solar-Cells. Synth. Met., 1991. 41(3): pp.1173-1176.
DOI: 10.1016/0379-6779(91)91581-t
Google Scholar
[3]
Tang, C. W., Two-layer organic photovoltaic cell. Appl. Phys. Lett., 1986. 48(2): pp.183-185.
Google Scholar
[4]
Sariciftci, N. S., et al., Photoinduced Electron-Transfer from a Conducting Polymer to Buckminster fullerene. Science, 1992. 258(5087): pp.1474-1476.
DOI: 10.1126/science.258.5087.1474
Google Scholar
[5]
Yu, G., et al., Polymer photovoltaic cells: Enhanced efficiencie via a network of internal donor-acceptor heterojunctions. Science, 1995. 270(5243): pp.1789-1791.
DOI: 10.1126/science.270.5243.1789
Google Scholar
[6]
Hoppe, H. and Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem., 2006. 16(1): pp.45-61.
DOI: 10.1039/b510618b
Google Scholar
[7]
Dennler, G., Scharber, M. C., and Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater., 2009. 21(13): pp.1323-1338.
DOI: 10.1002/adma.200801283
Google Scholar
[8]
Hains, A. W., et al., Molecular Semiconductors in Organic Photovoltaic Cells. Chem. Rev., 2010. 110(11): pp.6689-6735.
DOI: 10.1021/cr9002984
Google Scholar
[9]
Deibel, C. and Dyakonov, V., Polymer-fullerene Bulk Heterojunction Solar Cells. Rep. Prog. Phys., 2010. 73(9): pp.1-39.
DOI: 10.1088/0034-4885/73/9/096401
Google Scholar
[10]
Vacar, D., et al., Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends. Phys. Rev. B, 1997. 56(8): pp.4573-4577.
DOI: 10.1103/physrevb.56.4573
Google Scholar
[11]
Mihailetchi, V. D., et al., Charge transport and photocurrent generation in poly (3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater., 2006. 16(5): pp.699-708.
DOI: 10.1002/adfm.200500420
Google Scholar
[12]
Blom, P. W. M., et al., Device physics of polymer : fullerene bulk heterojunction solar cells. Adv. Mater., 2007. 19(12): pp.1551-1566.
DOI: 10.1002/adma.200601093
Google Scholar
[13]
Kline, R. J., et al., Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules, 2005. 38(8): pp.3312-3319.
DOI: 10.1021/ma047415f
Google Scholar
[14]
Shaheen, S. E., et al., 2. 5% efficient organic plastic solar cells. Appl. Phys. Lett., 2001. 78(6): pp.841-843.
Google Scholar
[15]
Facchetti, A., et al., Building blocks for N-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized ligothiophenes (nTs; n=2-6). Systematic synthesis, spectroscopy, electrochemistry, and solid-state organization. J. Am. Chem. Soc., 2004. 126(41): pp.13480-13501.
DOI: 10.1021/ja048988a
Google Scholar
[16]
Hoppe, H., et al., Nanoscale Morphology of Conjugated Polymer/fullerene-based Bulk-heterojunction Solar Cells. Adv. Funct. Mater., 2004. 14(10): pp.1005-1011.
DOI: 10.1002/adfm.200305026
Google Scholar
[17]
Erb, T., et al., Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater., 2005. 15(7): pp.1193-1196.
DOI: 10.1002/adfm.200400521
Google Scholar
[18]
Yang, X. N., et al., Nanoscale morphology of high-performance polymer solar cells. Nano Lett., 2005. 5(4): pp.579-583.
Google Scholar
[19]
Venkataraman, D., et al., Role of Molecular Architecture in Organic Photovoltaic Cells. J. Phys. Chem. Lett., 2010. 1(6): pp.947-958.
Google Scholar
[20]
Ma, W. L., et al., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater., 2005. 15(10): pp.1617-1622.
DOI: 10.1002/adfm.200500211
Google Scholar
[21]
Lungenschmied, C., et al., Real-time in-situ observation of morphological changes in organic bulk-heterojunction solar cells by means of capacitance measurements. J. Appl. Phys., 2011. 109(4).
DOI: 10.1063/1.3549727
Google Scholar
[22]
Li, Y., et al., Thermal treatment under reverse bias: Effective tool for polymer/fullerene bulk heterojunction solar cells. Synth. Met., 2008. 158(5): pp.190-193.
DOI: 10.1016/j.synthmet.2007.12.015
Google Scholar
[23]
Giridharagopal, R. and Ginger, D. S., Characterizing Morphology in Bulk Heterojunction Organic Photovoltaic Systems. J. Phys. Chem. Lett., 2010. 1(7): pp.1160-1169.
DOI: 10.1021/jz100100p
Google Scholar
[24]
Chen, D. A., et al., P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology. Nano Lett., 2011. 11(2): pp.561-567.
DOI: 10.1021/nl103482n
Google Scholar
[25]
Brabec, C. J., et al., Production aspects of organic photovoltaics and their impact on the commercialization of devices. MRS Bull., 2005. 30(1): pp.50-52.
DOI: 10.1557/mrs2005.10
Google Scholar
[26]
Kim, Y., et al., Composition and annealing effects in polythiophene/fullerene solar cells. Journal of Materials Science, 2005. 40(6): pp.1371-1376.
Google Scholar
[27]
Hwang, I. W., Moses, D., and Heeger, A. J., Photoinduced carrier generation in P3HT/PCBM bulk heterojunction materials. J. Phys. Chem. C, 2008. 112(11): pp.4350-4354.
DOI: 10.1021/jp075565x
Google Scholar
[28]
Huang, Y. C., et al., Quantitative nanoscale monitoring the effect of annealing process on the morphology and optical properties of poly(3-hexylthiophene)/[6, 6]-phenyl C-61-butyric acid methyl ester thin film used in photovoltaic devices. J. Appl. Phys., 2009. 106(3).
DOI: 10.1063/1.3187930
Google Scholar
[29]
Marsh, R. A., et al., Effect of Annealing on P3HT: PCBM Charge Transfer and Nanoscale Morphology Probed by Ultrafast Spectroscopy. Nano Lett., 2010. 10(3): pp.923-930.
DOI: 10.1021/nl9038289
Google Scholar
[30]
Howard, I. A., et al., Effect of Morphology on Ultrafast Free Carrier Generation in Polythiophene: Fullerene Organic Solar Cells. J. Am. Chem. Soc., 2010. 132(42): pp.14866-14876.
DOI: 10.1021/ja105260d
Google Scholar
[31]
Beaujuge, P. M. and Fréchet, J. M. J., Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications. J. Am. Chem. Soc., (2011).
DOI: 10.1021/ja2073643
Google Scholar
[32]
Skotheim, T. A., Elsenbaumer, R. L., and Reynolds, J. R., Handbook of conducting polymers. 2nd ed1998, New York: M. Dekker. xiii, 1097 p.
Google Scholar
[33]
Morita, S., et al., The Absorption-Spectrum and a Cyclic Voltammogram of C-60-Doped Poly(3-Alkylthiophene). J Phys-Condens Mat, 1993. 5(8): p. L103-L106.
DOI: 10.1088/0953-8984/5/8/001
Google Scholar
[34]
Facchetti, A., pi-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mat., 2011. 23(3): pp.733-758.
DOI: 10.1021/cm102419z
Google Scholar
[35]
Mozer, A. J., et al., Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: A comparative study. Phys. Rev. B, 2005. 71(3).
DOI: 10.1103/physrevb.71.035214
Google Scholar
[36]
Geim, A. K. and Novoselov, K. S., The rise of graphene. Nat. Mater., 2007. 6(3): pp.183-191.
Google Scholar
[37]
Novoselov, K. S., et al., Electronic properties of graphene. Phys Status Solidi B, 2007. 244(11): pp.4106-4111.
Google Scholar
[38]
Liu, Q., et al., Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT. Adv. Funct. Mater., 2009. 19(6): pp.894-904.
DOI: 10.1002/adfm.200800954
Google Scholar
[39]
Yang, Z. L., et al., Preparation of poly(3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Appl Surf Sci, 2010. 257(1): pp.138-142.
DOI: 10.1016/j.apsusc.2010.06.051
Google Scholar
[40]
Li, S. S., et al., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 2010. 4(6): pp.3169-3174.
DOI: 10.1021/nn100551j
Google Scholar
[41]
Hill, C. M., Zhu, Y., and Pan, S., Fluorescence and Electroluminescence Quenching Evidence of Interfacial Charge Transfer in Poly (3-hexylthiophene): Graphene Oxide Bulk Heterojunction Photovoltaic Devices. ACS Nano, 2011. 5(2): pp.942-951.
DOI: 10.1021/nn1022457
Google Scholar
[42]
Yu, D., et al., Soluble P3HT-Grafted Graphene for Efficient Bilayer−Heterojunction Photovoltaic Devices. ACS Nano, 2010. 4(10): pp.5633-5640.
DOI: 10.1021/nn101671t
Google Scholar
[43]
Yu, D. S., et al., Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. J. Phys. Chem. Lett., 2011. 2(10): pp.1113-1118.
DOI: 10.1021/jz200428y
Google Scholar
[44]
Gus'kova, O. A., et al., Self-assembled monolayers of beta-alkylated oligothiophenes on graphite substrate: Molecular dynamics simulation. J. Phys. Chem. C, 2007. 111(19): pp.7165-7174.
DOI: 10.1021/jp0704618
Google Scholar
[45]
Surin, M., et al., Molecule-molecule versus molecule-substrate interactions in the assembly of oligothiophenes at surfaces. J. Phys. Chem. B, 2006. 110(15): pp.7898-7908.
DOI: 10.1021/jp056824q
Google Scholar
[46]
Wang, Y. B., et al., Fluorescence Quenching in Conjugated Polymers Blended with Reduced Graphitic Oxide. J. Phys. Chem. C, 2010. 114(9): pp.4153-4159.
DOI: 10.1021/jp9097793
Google Scholar
[47]
Yu, Y. -J., et al., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett., 2009. 9(10): pp.3430-3434.
DOI: 10.1021/nl901572a
Google Scholar
[48]
Kudin, K. et al., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2008. 8: pp.36-41.
Google Scholar
[49]
Rao, A. M., et al., Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997. 388(6639): pp.257-259.
DOI: 10.1038/40827
Google Scholar
[50]
Su, Q., et al., Composites of Graphene with Large Aromatic Molecules. Adv. Mater., 2009. 21(31): p.3191.
Google Scholar
[51]
Yu, F. and Kuppa, V.K. The performance of P3HT: PCBM solar cells with pristine graphene. Appl. Phys. Lett. (submitted).
Google Scholar
[52]
Kymakis, E., Kornilios, N. and Koudoumas, E. Carbon nanotube doping of P3HT : PCBM photovoltaic devices. J. Phys. D. Appl. Phys., 2008. 41: p.165110.
DOI: 10.1088/0022-3727/41/16/165110
Google Scholar