p.260
p.264
p.268
p.272
p.278
p.283
p.288
p.293
p.297
Analysis of Static and Dynamic Stiffness for Coupled Double-Rotor Spindle System of High Speed Grinder
Abstract:
This study was focused on the theoretical modeling and numerical investigation about the dynamic and static stiffness of coupled double-rotor spindle system of high speed grinder. The moment balance and the transition matrix, the state vector, field matrix of spindle system of high speed grinder were analyzed and deduced. The theoretical models about dynamic and static stiffness were established using the transfer matrix method. The numerical results showed that increased rigidity of front bearing significantly increased static and dynamic rigidity of spindle end and the rigidity of front bearing increased, dynamic rigidity increased more significantly than static rigidity. Furthermore, it can be conclued that increased overhang length reduced dynamic and static rigidity of spindle end at an increasingly slower rate and the span of bearing increased, static and dynamic rigidities of spindle end were reduced
Info:
Periodical:
Pages:
278-282
Citation:
Online since:
August 2012
Authors:
Price:
Сopyright:
© 2012 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: