Wafer Level Glass Molding

Article Preview

Abstract:

Manufacturing of micro optical components is approached with many different technologies. In this paper it is presented how the precision glass molding process is enabled to manufacture micro optical components made out of glass. In comparison to the existing glass molding technology the new approach aims for molding entire glass wafers including multiple micro optical components. It is explained which developments in the filed of simulation, mold manufacturing and molding were accomplished in order to enable the precision glass molding on wafer scale.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 523-524)

Pages:

1001-1005

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dambon, O. et al., Efficient mold manufacturing for precision glass molding, Journal of Vacuum Science Technology B 27, 1445, (2009)

Google Scholar

[2] Su, L.; Yi, A., Investigation of the effect of coefficient of thermal expansion on prediction of refractive index of thermally formed glass lenses using FEM simulation, Journal of Non-Crystalline Solids, Volume 357, pp.3006-3012, (2011)

DOI: 10.1016/j.jnoncrysol.2011.04.005

Google Scholar

[3] Bifano, T.G., Ductile regime grinding of brittle materials, PhD Thesis, North Carolina State University, (1988)

Google Scholar

[4] Brinksmeier et al., Dressing of Coarse-Grained Diamond Wheels for Ductile Machining of Brittle Materials, Towards Synthesis of Micro-/Nanosystems, pp.305-307, (2007)

DOI: 10.1007/1-84628-559-3_53

Google Scholar

[5] Liu, K.; Li, X. P., Ductile cutting of tungsten carbide. Journal of Materials Processing Technology, 113, pp.348-354, (2001)

DOI: 10.1016/s0924-0136(01)00582-9

Google Scholar

[6] Liu, K., Li, X. P., Rahman, M.; Liu, X. D., CBN tool wear in ductile cutting of tungsten carbide. Wear, 255, pp.1344-1351, (2003)

DOI: 10.1016/s0043-1648(03)00061-9

Google Scholar

[7] Suzuki, H. et al., Study on precision grinding of micro aspherical surface: effects of tool errors on workpiece form accuracies and its compensation methods, Journal of the Japan Society for Precision Engineering, 65, pp. l401-405, (1999)

DOI: 10.2493/jjspe.65.401

Google Scholar

[8] Huang, H., Chen, W.K. and Kuriyagawa, T., Profile error compensation techniques in parallel nanogrinding of tungsten carbide aspherical mould inserts. International Journal of Machine Tool and Manufacture, 47, pp.2237-2245, (2007)

DOI: 10.1016/j.ijmachtools.2007.06.008

Google Scholar

[9] Yamamoto, Y et al., Precision grinding of microarray lens molding die with 4-axes controlled microwheel, Science and Technology of Advanced Materials, 8, pp.173-176, (2007)

DOI: 10.1016/j.stam.2007.02.007

Google Scholar

[10] Suzuki, H. et al., Precision Cutting of Aspherical Ceramic Molds with Micro PCD Milling Tool, CIRP Annals - Manufacturing Technology, 56, pp.131-134, (2007)

DOI: 10.1016/j.cirp.2007.05.033

Google Scholar

[11] Boehlke, W.: Hartmetall - ein moderner Hochleistungswerkstoff, Materialwissenschaften und Werkstofftechnik , no. 33, p.575 – 580, (2002)

DOI: 10.1002/1521-4052(200210)33:10<575::aid-mawe575>3.0.co;2-1

Google Scholar

[12] Salmang, H.; Scholze, H.; Telle, R.: Keramik, Springer-Verlag Berlin Heidelberg, (2007)

Google Scholar